Loading…

Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting

The influence of the microstructure on mechanical properties of AlSi10Mg fabricated by casting and selective laser melting (SLM) were investigated and contrasted in this work, with an emphasis on understanding the forming mechanism. The microstructure, phase structure and mechanical properties were...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science & technology 2020-03, Vol.41, p.199-208
Main Authors: Yan, Qian, Song, Bo, Shi, Yusheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of the microstructure on mechanical properties of AlSi10Mg fabricated by casting and selective laser melting (SLM) were investigated and contrasted in this work, with an emphasis on understanding the forming mechanism. The microstructure, phase structure and mechanical properties were characterized by scanning electron microscopy/field-emission Transmission Electron Microscopy (SEM/TEM), X-Ray Diffraction (XRD), tensile and fatigue tests. The results indicated that the SLM AlSi10Mg exhibited a supersaturated Si network structure precipitated along α-Al cell. Brittle β-Al5FeSi and π-Al8FeMg3Si6 phases were found in the as-cast and SLM AlSi10Mg respectively due to different thermal histories during processing. The SLM AlSi10Mg showed higher tensile strength but lower elongation than the casting, as the result of grain refinement and tortuous crack path. The fatigue results revealed that unmelted powder, oxide inclusion and pores can considerably degrade the fatigue properties for the SLM AlSi10Mg. The SLM process offered a new method for material processing that would avoid harmful Fe-bearing intermetallic compounds and refine the microstructures for enhancing strength.
ISSN:1005-0302
1941-1162
DOI:10.1016/j.jmst.2019.08.049