Loading…

Suppression of grain boundary migration at cryogenic temperature in an extremely fine nanograined Ni-Mo alloy

Microindentation creep tests on an electrodeposited extremely fine (4.9 nm) nanograined (ng) Ni-14.2 at.% Mo (Ni-14.2Mo) at both room temperature (RT) and liquid nitrogen temperature (LNT) demonstrated that lowering temperature retarded softening in the ng Ni-Mo alloy. The obtained strain rate sensi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science & technology 2020-11, Vol.57, p.65-69
Main Authors: Hu, J., Li, J.X., Shi, Y.-N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microindentation creep tests on an electrodeposited extremely fine (4.9 nm) nanograined (ng) Ni-14.2 at.% Mo (Ni-14.2Mo) at both room temperature (RT) and liquid nitrogen temperature (LNT) demonstrated that lowering temperature retarded softening in the ng Ni-Mo alloy. The obtained strain rate sensitivity at LNT was one order of magnitude lower than that at RT. Microstructural characterization revealed that mechanically-driven grain boundary (GB) migration was greatly suppressed by lowering temperature, which might be ascribed to the presence of solute Mo atoms that significantly retarded coupled GB motion at LNT. Deformation was instead carried by shear bands.
ISSN:1005-0302
1941-1162
DOI:10.1016/j.jmst.2020.03.048