Loading…
Locally isometric embeddings of quotients of the rotation group modulo finite symmetries
The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)∕S of the rotation group modulo finite symmetry groups. Data on such quotient manifolds naturally occur...
Saved in:
Published in: | Journal of multivariate analysis 2021-09, Vol.185, p.104764, Article 104764 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3 |
container_end_page | |
container_issue | |
container_start_page | 104764 |
container_title | Journal of multivariate analysis |
container_volume | 185 |
creator | Hielscher, Ralf Lippert, Laura |
description | The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)∕S of the rotation group modulo finite symmetry groups. Data on such quotient manifolds naturally occur in crystallography, material science and biochemistry. We provide a generic framework for the construction of such embeddings which generalizes the embeddings constructed in Arnold et al. (2018). The central advantage of our larger class of embeddings is that it includes locally isometric embeddings for all crystallographic symmetry groups. |
doi_str_mv | 10.1016/j.jmva.2021.104764 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmva_2021_104764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X21000427</els_id><sourcerecordid>S0047259X21000427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CovMDXJJM0E3EjxDwpuFLoLmeROzTAzqUmm0Ld32rp2dbkfnI97D0L3lCwoocuHdtH2e7NghNEp4HLJL9CMEiUKyXh5iWZkCgsm1OYa3aTUEkKpkHyGNutgTdcdsE-hhxy9xdDX4JwftgmHBv-MIXsY8mnJ34BjyCb7MOBtDOMO98GNXcCNH3wGnA79qQXSLbpqTJfg7m_O0dfL8-fqrVh_vL6vntaFLQnJBQerFFOVMFRRtzRQEsEcq0teOyuNk5WtrGSSC0OErQWvpLNUyZo3sqISyjli514bQ0oRGr2LvjfxoCnRRze61Uc3-uhGn91M0OMZgumyvYeok52etOB8BJu1C_4__BchV28k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locally isometric embeddings of quotients of the rotation group modulo finite symmetries</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hielscher, Ralf ; Lippert, Laura</creator><creatorcontrib>Hielscher, Ralf ; Lippert, Laura</creatorcontrib><description>The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)∕S of the rotation group modulo finite symmetry groups. Data on such quotient manifolds naturally occur in crystallography, material science and biochemistry. We provide a generic framework for the construction of such embeddings which generalizes the embeddings constructed in Arnold et al. (2018). The central advantage of our larger class of embeddings is that it includes locally isometric embeddings for all crystallographic symmetry groups.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2021.104764</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Euclidean embedding ; Locally isometric embedding ; Rotation group</subject><ispartof>Journal of multivariate analysis, 2021-09, Vol.185, p.104764, Article 104764</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3</citedby><cites>FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Hielscher, Ralf</creatorcontrib><creatorcontrib>Lippert, Laura</creatorcontrib><title>Locally isometric embeddings of quotients of the rotation group modulo finite symmetries</title><title>Journal of multivariate analysis</title><description>The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)∕S of the rotation group modulo finite symmetry groups. Data on such quotient manifolds naturally occur in crystallography, material science and biochemistry. We provide a generic framework for the construction of such embeddings which generalizes the embeddings constructed in Arnold et al. (2018). The central advantage of our larger class of embeddings is that it includes locally isometric embeddings for all crystallographic symmetry groups.</description><subject>Euclidean embedding</subject><subject>Locally isometric embedding</subject><subject>Rotation group</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsv4CovMDXJJM0E3EjxDwpuFLoLmeROzTAzqUmm0Ld32rp2dbkfnI97D0L3lCwoocuHdtH2e7NghNEp4HLJL9CMEiUKyXh5iWZkCgsm1OYa3aTUEkKpkHyGNutgTdcdsE-hhxy9xdDX4JwftgmHBv-MIXsY8mnJ34BjyCb7MOBtDOMO98GNXcCNH3wGnA79qQXSLbpqTJfg7m_O0dfL8-fqrVh_vL6vntaFLQnJBQerFFOVMFRRtzRQEsEcq0teOyuNk5WtrGSSC0OErQWvpLNUyZo3sqISyjli514bQ0oRGr2LvjfxoCnRRze61Uc3-uhGn91M0OMZgumyvYeok52etOB8BJu1C_4__BchV28k</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Hielscher, Ralf</creator><creator>Lippert, Laura</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>Locally isometric embeddings of quotients of the rotation group modulo finite symmetries</title><author>Hielscher, Ralf ; Lippert, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Euclidean embedding</topic><topic>Locally isometric embedding</topic><topic>Rotation group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hielscher, Ralf</creatorcontrib><creatorcontrib>Lippert, Laura</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hielscher, Ralf</au><au>Lippert, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally isometric embeddings of quotients of the rotation group modulo finite symmetries</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2021-09</date><risdate>2021</risdate><volume>185</volume><spage>104764</spage><pages>104764-</pages><artnum>104764</artnum><issn>0047-259X</issn><eissn>1095-7243</eissn><abstract>The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)∕S of the rotation group modulo finite symmetry groups. Data on such quotient manifolds naturally occur in crystallography, material science and biochemistry. We provide a generic framework for the construction of such embeddings which generalizes the embeddings constructed in Arnold et al. (2018). The central advantage of our larger class of embeddings is that it includes locally isometric embeddings for all crystallographic symmetry groups.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2021.104764</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-259X |
ispartof | Journal of multivariate analysis, 2021-09, Vol.185, p.104764, Article 104764 |
issn | 0047-259X 1095-7243 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jmva_2021_104764 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Euclidean embedding Locally isometric embedding Rotation group |
title | Locally isometric embeddings of quotients of the rotation group modulo finite symmetries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20isometric%20embeddings%20of%20quotients%20of%20the%20rotation%20group%20modulo%20finite%20symmetries&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Hielscher,%20Ralf&rft.date=2021-09&rft.volume=185&rft.spage=104764&rft.pages=104764-&rft.artnum=104764&rft.issn=0047-259X&rft.eissn=1095-7243&rft_id=info:doi/10.1016/j.jmva.2021.104764&rft_dat=%3Celsevier_cross%3ES0047259X21000427%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |