Loading…

Locally isometric embeddings of quotients of the rotation group modulo finite symmetries

The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)∕S of the rotation group modulo finite symmetry groups. Data on such quotient manifolds naturally occur...

Full description

Saved in:
Bibliographic Details
Published in:Journal of multivariate analysis 2021-09, Vol.185, p.104764, Article 104764
Main Authors: Hielscher, Ralf, Lippert, Laura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3
cites cdi_FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3
container_end_page
container_issue
container_start_page 104764
container_title Journal of multivariate analysis
container_volume 185
creator Hielscher, Ralf
Lippert, Laura
description The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)∕S of the rotation group modulo finite symmetry groups. Data on such quotient manifolds naturally occur in crystallography, material science and biochemistry. We provide a generic framework for the construction of such embeddings which generalizes the embeddings constructed in Arnold et al. (2018). The central advantage of our larger class of embeddings is that it includes locally isometric embeddings for all crystallographic symmetry groups.
doi_str_mv 10.1016/j.jmva.2021.104764
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jmva_2021_104764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X21000427</els_id><sourcerecordid>S0047259X21000427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CovMDXJJM0E3EjxDwpuFLoLmeROzTAzqUmm0Ld32rp2dbkfnI97D0L3lCwoocuHdtH2e7NghNEp4HLJL9CMEiUKyXh5iWZkCgsm1OYa3aTUEkKpkHyGNutgTdcdsE-hhxy9xdDX4JwftgmHBv-MIXsY8mnJ34BjyCb7MOBtDOMO98GNXcCNH3wGnA79qQXSLbpqTJfg7m_O0dfL8-fqrVh_vL6vntaFLQnJBQerFFOVMFRRtzRQEsEcq0teOyuNk5WtrGSSC0OErQWvpLNUyZo3sqISyjli514bQ0oRGr2LvjfxoCnRRze61Uc3-uhGn91M0OMZgumyvYeok52etOB8BJu1C_4__BchV28k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locally isometric embeddings of quotients of the rotation group modulo finite symmetries</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hielscher, Ralf ; Lippert, Laura</creator><creatorcontrib>Hielscher, Ralf ; Lippert, Laura</creatorcontrib><description>The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)∕S of the rotation group modulo finite symmetry groups. Data on such quotient manifolds naturally occur in crystallography, material science and biochemistry. We provide a generic framework for the construction of such embeddings which generalizes the embeddings constructed in Arnold et al. (2018). The central advantage of our larger class of embeddings is that it includes locally isometric embeddings for all crystallographic symmetry groups.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2021.104764</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Euclidean embedding ; Locally isometric embedding ; Rotation group</subject><ispartof>Journal of multivariate analysis, 2021-09, Vol.185, p.104764, Article 104764</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3</citedby><cites>FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Hielscher, Ralf</creatorcontrib><creatorcontrib>Lippert, Laura</creatorcontrib><title>Locally isometric embeddings of quotients of the rotation group modulo finite symmetries</title><title>Journal of multivariate analysis</title><description>The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)∕S of the rotation group modulo finite symmetry groups. Data on such quotient manifolds naturally occur in crystallography, material science and biochemistry. We provide a generic framework for the construction of such embeddings which generalizes the embeddings constructed in Arnold et al. (2018). The central advantage of our larger class of embeddings is that it includes locally isometric embeddings for all crystallographic symmetry groups.</description><subject>Euclidean embedding</subject><subject>Locally isometric embedding</subject><subject>Rotation group</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsv4CovMDXJJM0E3EjxDwpuFLoLmeROzTAzqUmm0Ld32rp2dbkfnI97D0L3lCwoocuHdtH2e7NghNEp4HLJL9CMEiUKyXh5iWZkCgsm1OYa3aTUEkKpkHyGNutgTdcdsE-hhxy9xdDX4JwftgmHBv-MIXsY8mnJ34BjyCb7MOBtDOMO98GNXcCNH3wGnA79qQXSLbpqTJfg7m_O0dfL8-fqrVh_vL6vntaFLQnJBQerFFOVMFRRtzRQEsEcq0teOyuNk5WtrGSSC0OErQWvpLNUyZo3sqISyjli514bQ0oRGr2LvjfxoCnRRze61Uc3-uhGn91M0OMZgumyvYeok52etOB8BJu1C_4__BchV28k</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Hielscher, Ralf</creator><creator>Lippert, Laura</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>Locally isometric embeddings of quotients of the rotation group modulo finite symmetries</title><author>Hielscher, Ralf ; Lippert, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Euclidean embedding</topic><topic>Locally isometric embedding</topic><topic>Rotation group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hielscher, Ralf</creatorcontrib><creatorcontrib>Lippert, Laura</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hielscher, Ralf</au><au>Lippert, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally isometric embeddings of quotients of the rotation group modulo finite symmetries</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2021-09</date><risdate>2021</risdate><volume>185</volume><spage>104764</spage><pages>104764-</pages><artnum>104764</artnum><issn>0047-259X</issn><eissn>1095-7243</eissn><abstract>The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)∕S of the rotation group modulo finite symmetry groups. Data on such quotient manifolds naturally occur in crystallography, material science and biochemistry. We provide a generic framework for the construction of such embeddings which generalizes the embeddings constructed in Arnold et al. (2018). The central advantage of our larger class of embeddings is that it includes locally isometric embeddings for all crystallographic symmetry groups.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2021.104764</doi></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2021-09, Vol.185, p.104764, Article 104764
issn 0047-259X
1095-7243
language eng
recordid cdi_crossref_primary_10_1016_j_jmva_2021_104764
source ScienceDirect Freedom Collection 2022-2024
subjects Euclidean embedding
Locally isometric embedding
Rotation group
title Locally isometric embeddings of quotients of the rotation group modulo finite symmetries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20isometric%20embeddings%20of%20quotients%20of%20the%20rotation%20group%20modulo%20finite%20symmetries&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Hielscher,%20Ralf&rft.date=2021-09&rft.volume=185&rft.spage=104764&rft.pages=104764-&rft.artnum=104764&rft.issn=0047-259X&rft.eissn=1095-7243&rft_id=info:doi/10.1016/j.jmva.2021.104764&rft_dat=%3Celsevier_cross%3ES0047259X21000427%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-4ec992985a191d6ae3052d2b34bdc7ad78c8c72745a05cb5487dc197b4f7817e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true