Loading…
Rheo-optics of giant micelles: SALS patterns of cetyltrimethylammonium tosylate solutions in presence of sodium bromide
In this work, we present a systematic study based on Small-Angle Light Scattering (SALS) patterns of the simple shear flow response of semi-diluted solutions of cetyltrimethylammonium tosylate (CTAT; 5.5 wt.% - 0.12 M) in the presence of sodium bromide (NaBr) at different [NaBr]={0,0.12,0.19,0.25,0....
Saved in:
Published in: | Journal of non-Newtonian fluid mechanics 2024-09, Vol.331, p.105286, Article 105286 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c183t-f5202cef25cd4bcefd58a73c7885874b7dd116acff59d43fd37c90c7d9c819c3 |
container_end_page | |
container_issue | |
container_start_page | 105286 |
container_title | Journal of non-Newtonian fluid mechanics |
container_volume | 331 |
creator | Romero-Ureña, Moisés Medina-Torres, Luis Manero, Octavio López-Aguilar, J. Esteban |
description | In this work, we present a systematic study based on Small-Angle Light Scattering (SALS) patterns of the simple shear flow response of semi-diluted solutions of cetyltrimethylammonium tosylate (CTAT; 5.5 wt.% - 0.12 M) in the presence of sodium bromide (NaBr) at different [NaBr]={0,0.12,0.19,0.25,0.3} M concentrations. We evidence a relationship between rheological and light scattering data that reveals a transition into a fast-breaking regime in the dynamics of wormlike micelles formed by the CTAT/NaBr system (Macías et al., 2011; Fierro et al., 2021). This transition into a micellar fast-breaking regime with salt addition ([NaBr]≥0) appears marked by the following features: (i) a decrease in the relaxation time of the material λ0, accompanied by (ii) a decrease of the viscosity level at low shear rates η0 (Macías et al., 2011; Fierro et al., 2021; Schubert et al., 2003; Alkschbirs et al., 2015; Bandyopadhyay et al., 2003). With these, (iii) the formation of butterfly-like patterns is recorded originating from concentration fluctuations, evolution that is accompanied by: (iv) shear banding in the form of non-monotonic flow curves and (v) slow oscillatory transient responses in start-up flow tests captured theoretically with the Bautista–Manero–Puig (BMP) model. In addition, the Cox–Merz rule is fulfilled at molar salt-to-surfactant ratios of R≥1.5. This results in shorter structure-recovery time-scales than the characteristic-time of the flow (Macías et al., 2011; Fierro et al., 2021; Manero et al., 2002). In the case of the elastic modulus G0, the variation was small, which suggests a transition from an entangled to a multiconnected network, as suggested by Kadoma & van Egmond (1997), Kadoma et al. (1997) and Fierro et al. (2021). From a theoretical perspective, we provide predictions for the shear–stress and the first normal-stress growth coefficients in transient start-up simple shear flow using the BMP model. Here, banding R=1.5 solutions display overshot responses at relatively high shear rates (γ̇=10−30s−1), in-line with experimental findings on the start-up flow of wormlike micellar solutions (Soltero et al., 1999; Lerouge et al., 2004; Hu & Lips 2005; Pipe et al., 2010; Mohammadigoushki et al., 2019). Our results are consistent with those reported in other investigations (Macías et al., 2011; Fierro et al., 2021; Schubert et al., 2003; Alkschbirs et al., 2015; Bandyopadhyay et al., 2003; Kadoma et al., 1997; Soltero et al., 1999; Lerouge et al., 2 |
doi_str_mv | 10.1016/j.jnnfm.2024.105286 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jnnfm_2024_105286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025724001022</els_id><sourcerecordid>S0377025724001022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183t-f5202cef25cd4bcefd58a73c7885874b7dd116acff59d43fd37c90c7d9c819c3</originalsourceid><addsrcrecordid>eNp9UMtqwzAQ1KGFpo8v6MU_4FSyLMsu9BBCXxAoNLkLZ7VqZGwrSEpL_r5y0nP3sg9mlpkh5J7ROaOseujm3TiaYV7QokwXUdTVBZlRLmVOCyGvyHUIHU0leDUjP587dLnbRwshcyb7su0Ys8EC9j2Gx2y9WK2zfRsj-vEEAIzHPno7YNwd-3YY3GgPQxZdSFvELLj-EK1LYDtme48BR8CJGJyegFvvBqvxllyatg9499dvyOblebN8y1cfr-_LxSoHVvOYG5FsAJpCgC63adCibiUHWdeiluVWas1Y1YIxotElN5pLaChI3UDNGuA3hJ_fgncheDRqn6S3_qgYVVNcqlOnuNQUlzrHlVhPZxYmZd8WvQpgJx_aeoSotLP_8n8B50F6rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rheo-optics of giant micelles: SALS patterns of cetyltrimethylammonium tosylate solutions in presence of sodium bromide</title><source>ScienceDirect Freedom Collection</source><creator>Romero-Ureña, Moisés ; Medina-Torres, Luis ; Manero, Octavio ; López-Aguilar, J. Esteban</creator><creatorcontrib>Romero-Ureña, Moisés ; Medina-Torres, Luis ; Manero, Octavio ; López-Aguilar, J. Esteban</creatorcontrib><description>In this work, we present a systematic study based on Small-Angle Light Scattering (SALS) patterns of the simple shear flow response of semi-diluted solutions of cetyltrimethylammonium tosylate (CTAT; 5.5 wt.% - 0.12 M) in the presence of sodium bromide (NaBr) at different [NaBr]={0,0.12,0.19,0.25,0.3} M concentrations. We evidence a relationship between rheological and light scattering data that reveals a transition into a fast-breaking regime in the dynamics of wormlike micelles formed by the CTAT/NaBr system (Macías et al., 2011; Fierro et al., 2021). This transition into a micellar fast-breaking regime with salt addition ([NaBr]≥0) appears marked by the following features: (i) a decrease in the relaxation time of the material λ0, accompanied by (ii) a decrease of the viscosity level at low shear rates η0 (Macías et al., 2011; Fierro et al., 2021; Schubert et al., 2003; Alkschbirs et al., 2015; Bandyopadhyay et al., 2003). With these, (iii) the formation of butterfly-like patterns is recorded originating from concentration fluctuations, evolution that is accompanied by: (iv) shear banding in the form of non-monotonic flow curves and (v) slow oscillatory transient responses in start-up flow tests captured theoretically with the Bautista–Manero–Puig (BMP) model. In addition, the Cox–Merz rule is fulfilled at molar salt-to-surfactant ratios of R≥1.5. This results in shorter structure-recovery time-scales than the characteristic-time of the flow (Macías et al., 2011; Fierro et al., 2021; Manero et al., 2002). In the case of the elastic modulus G0, the variation was small, which suggests a transition from an entangled to a multiconnected network, as suggested by Kadoma & van Egmond (1997), Kadoma et al. (1997) and Fierro et al. (2021). From a theoretical perspective, we provide predictions for the shear–stress and the first normal-stress growth coefficients in transient start-up simple shear flow using the BMP model. Here, banding R=1.5 solutions display overshot responses at relatively high shear rates (γ̇=10−30s−1), in-line with experimental findings on the start-up flow of wormlike micellar solutions (Soltero et al., 1999; Lerouge et al., 2004; Hu & Lips 2005; Pipe et al., 2010; Mohammadigoushki et al., 2019). Our results are consistent with those reported in other investigations (Macías et al., 2011; Fierro et al., 2021; Schubert et al., 2003; Alkschbirs et al., 2015; Bandyopadhyay et al., 2003; Kadoma et al., 1997; Soltero et al., 1999; Lerouge et al., 2004; Hu & Lips 2005; López-Barrón et al., 2014) and reveal the influence of the Br−-ion used on the mechanical and optical response of the CTAT-NaBr system.
•Experimental rheological response is reported for the CTAT/NaBr WLM solution-system.•Butterfly patterns are measured under high NaBr concentrations.•The Cox–Merz rule is satisfied under incremented NaBr concentration.•A fast-breaking mechanism dominates the structural evolution of CTAT/NaBr solutions.•Relationship revealed among a relaxation-time reduction, the Cox–Merz rule, shear banding and the fast-breaking regime.•Shear-banding and start-up flow instabilities predicted theoretically using the BMP model.</description><identifier>ISSN: 0377-0257</identifier><identifier>DOI: 10.1016/j.jnnfm.2024.105286</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>BMP model ; Cetyltrimethylammonium tosylate ; Cox–Merz rule ; Fast-breaking regime ; Light scattering patterns ; Worm-like micelles</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2024-09, Vol.331, p.105286, Article 105286</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c183t-f5202cef25cd4bcefd58a73c7885874b7dd116acff59d43fd37c90c7d9c819c3</cites><orcidid>0000-0002-9963-821X ; 0009-0006-0689-7834 ; 0000-0002-0308-3994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Romero-Ureña, Moisés</creatorcontrib><creatorcontrib>Medina-Torres, Luis</creatorcontrib><creatorcontrib>Manero, Octavio</creatorcontrib><creatorcontrib>López-Aguilar, J. Esteban</creatorcontrib><title>Rheo-optics of giant micelles: SALS patterns of cetyltrimethylammonium tosylate solutions in presence of sodium bromide</title><title>Journal of non-Newtonian fluid mechanics</title><description>In this work, we present a systematic study based on Small-Angle Light Scattering (SALS) patterns of the simple shear flow response of semi-diluted solutions of cetyltrimethylammonium tosylate (CTAT; 5.5 wt.% - 0.12 M) in the presence of sodium bromide (NaBr) at different [NaBr]={0,0.12,0.19,0.25,0.3} M concentrations. We evidence a relationship between rheological and light scattering data that reveals a transition into a fast-breaking regime in the dynamics of wormlike micelles formed by the CTAT/NaBr system (Macías et al., 2011; Fierro et al., 2021). This transition into a micellar fast-breaking regime with salt addition ([NaBr]≥0) appears marked by the following features: (i) a decrease in the relaxation time of the material λ0, accompanied by (ii) a decrease of the viscosity level at low shear rates η0 (Macías et al., 2011; Fierro et al., 2021; Schubert et al., 2003; Alkschbirs et al., 2015; Bandyopadhyay et al., 2003). With these, (iii) the formation of butterfly-like patterns is recorded originating from concentration fluctuations, evolution that is accompanied by: (iv) shear banding in the form of non-monotonic flow curves and (v) slow oscillatory transient responses in start-up flow tests captured theoretically with the Bautista–Manero–Puig (BMP) model. In addition, the Cox–Merz rule is fulfilled at molar salt-to-surfactant ratios of R≥1.5. This results in shorter structure-recovery time-scales than the characteristic-time of the flow (Macías et al., 2011; Fierro et al., 2021; Manero et al., 2002). In the case of the elastic modulus G0, the variation was small, which suggests a transition from an entangled to a multiconnected network, as suggested by Kadoma & van Egmond (1997), Kadoma et al. (1997) and Fierro et al. (2021). From a theoretical perspective, we provide predictions for the shear–stress and the first normal-stress growth coefficients in transient start-up simple shear flow using the BMP model. Here, banding R=1.5 solutions display overshot responses at relatively high shear rates (γ̇=10−30s−1), in-line with experimental findings on the start-up flow of wormlike micellar solutions (Soltero et al., 1999; Lerouge et al., 2004; Hu & Lips 2005; Pipe et al., 2010; Mohammadigoushki et al., 2019). Our results are consistent with those reported in other investigations (Macías et al., 2011; Fierro et al., 2021; Schubert et al., 2003; Alkschbirs et al., 2015; Bandyopadhyay et al., 2003; Kadoma et al., 1997; Soltero et al., 1999; Lerouge et al., 2004; Hu & Lips 2005; López-Barrón et al., 2014) and reveal the influence of the Br−-ion used on the mechanical and optical response of the CTAT-NaBr system.
•Experimental rheological response is reported for the CTAT/NaBr WLM solution-system.•Butterfly patterns are measured under high NaBr concentrations.•The Cox–Merz rule is satisfied under incremented NaBr concentration.•A fast-breaking mechanism dominates the structural evolution of CTAT/NaBr solutions.•Relationship revealed among a relaxation-time reduction, the Cox–Merz rule, shear banding and the fast-breaking regime.•Shear-banding and start-up flow instabilities predicted theoretically using the BMP model.</description><subject>BMP model</subject><subject>Cetyltrimethylammonium tosylate</subject><subject>Cox–Merz rule</subject><subject>Fast-breaking regime</subject><subject>Light scattering patterns</subject><subject>Worm-like micelles</subject><issn>0377-0257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqwzAQ1KGFpo8v6MU_4FSyLMsu9BBCXxAoNLkLZ7VqZGwrSEpL_r5y0nP3sg9mlpkh5J7ROaOseujm3TiaYV7QokwXUdTVBZlRLmVOCyGvyHUIHU0leDUjP587dLnbRwshcyb7su0Ys8EC9j2Gx2y9WK2zfRsj-vEEAIzHPno7YNwd-3YY3GgPQxZdSFvELLj-EK1LYDtme48BR8CJGJyegFvvBqvxllyatg9499dvyOblebN8y1cfr-_LxSoHVvOYG5FsAJpCgC63adCibiUHWdeiluVWas1Y1YIxotElN5pLaChI3UDNGuA3hJ_fgncheDRqn6S3_qgYVVNcqlOnuNQUlzrHlVhPZxYmZd8WvQpgJx_aeoSotLP_8n8B50F6rQ</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Romero-Ureña, Moisés</creator><creator>Medina-Torres, Luis</creator><creator>Manero, Octavio</creator><creator>López-Aguilar, J. Esteban</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9963-821X</orcidid><orcidid>https://orcid.org/0009-0006-0689-7834</orcidid><orcidid>https://orcid.org/0000-0002-0308-3994</orcidid></search><sort><creationdate>202409</creationdate><title>Rheo-optics of giant micelles: SALS patterns of cetyltrimethylammonium tosylate solutions in presence of sodium bromide</title><author>Romero-Ureña, Moisés ; Medina-Torres, Luis ; Manero, Octavio ; López-Aguilar, J. Esteban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183t-f5202cef25cd4bcefd58a73c7885874b7dd116acff59d43fd37c90c7d9c819c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>BMP model</topic><topic>Cetyltrimethylammonium tosylate</topic><topic>Cox–Merz rule</topic><topic>Fast-breaking regime</topic><topic>Light scattering patterns</topic><topic>Worm-like micelles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romero-Ureña, Moisés</creatorcontrib><creatorcontrib>Medina-Torres, Luis</creatorcontrib><creatorcontrib>Manero, Octavio</creatorcontrib><creatorcontrib>López-Aguilar, J. Esteban</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romero-Ureña, Moisés</au><au>Medina-Torres, Luis</au><au>Manero, Octavio</au><au>López-Aguilar, J. Esteban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheo-optics of giant micelles: SALS patterns of cetyltrimethylammonium tosylate solutions in presence of sodium bromide</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2024-09</date><risdate>2024</risdate><volume>331</volume><spage>105286</spage><pages>105286-</pages><artnum>105286</artnum><issn>0377-0257</issn><abstract>In this work, we present a systematic study based on Small-Angle Light Scattering (SALS) patterns of the simple shear flow response of semi-diluted solutions of cetyltrimethylammonium tosylate (CTAT; 5.5 wt.% - 0.12 M) in the presence of sodium bromide (NaBr) at different [NaBr]={0,0.12,0.19,0.25,0.3} M concentrations. We evidence a relationship between rheological and light scattering data that reveals a transition into a fast-breaking regime in the dynamics of wormlike micelles formed by the CTAT/NaBr system (Macías et al., 2011; Fierro et al., 2021). This transition into a micellar fast-breaking regime with salt addition ([NaBr]≥0) appears marked by the following features: (i) a decrease in the relaxation time of the material λ0, accompanied by (ii) a decrease of the viscosity level at low shear rates η0 (Macías et al., 2011; Fierro et al., 2021; Schubert et al., 2003; Alkschbirs et al., 2015; Bandyopadhyay et al., 2003). With these, (iii) the formation of butterfly-like patterns is recorded originating from concentration fluctuations, evolution that is accompanied by: (iv) shear banding in the form of non-monotonic flow curves and (v) slow oscillatory transient responses in start-up flow tests captured theoretically with the Bautista–Manero–Puig (BMP) model. In addition, the Cox–Merz rule is fulfilled at molar salt-to-surfactant ratios of R≥1.5. This results in shorter structure-recovery time-scales than the characteristic-time of the flow (Macías et al., 2011; Fierro et al., 2021; Manero et al., 2002). In the case of the elastic modulus G0, the variation was small, which suggests a transition from an entangled to a multiconnected network, as suggested by Kadoma & van Egmond (1997), Kadoma et al. (1997) and Fierro et al. (2021). From a theoretical perspective, we provide predictions for the shear–stress and the first normal-stress growth coefficients in transient start-up simple shear flow using the BMP model. Here, banding R=1.5 solutions display overshot responses at relatively high shear rates (γ̇=10−30s−1), in-line with experimental findings on the start-up flow of wormlike micellar solutions (Soltero et al., 1999; Lerouge et al., 2004; Hu & Lips 2005; Pipe et al., 2010; Mohammadigoushki et al., 2019). Our results are consistent with those reported in other investigations (Macías et al., 2011; Fierro et al., 2021; Schubert et al., 2003; Alkschbirs et al., 2015; Bandyopadhyay et al., 2003; Kadoma et al., 1997; Soltero et al., 1999; Lerouge et al., 2004; Hu & Lips 2005; López-Barrón et al., 2014) and reveal the influence of the Br−-ion used on the mechanical and optical response of the CTAT-NaBr system.
•Experimental rheological response is reported for the CTAT/NaBr WLM solution-system.•Butterfly patterns are measured under high NaBr concentrations.•The Cox–Merz rule is satisfied under incremented NaBr concentration.•A fast-breaking mechanism dominates the structural evolution of CTAT/NaBr solutions.•Relationship revealed among a relaxation-time reduction, the Cox–Merz rule, shear banding and the fast-breaking regime.•Shear-banding and start-up flow instabilities predicted theoretically using the BMP model.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2024.105286</doi><orcidid>https://orcid.org/0000-0002-9963-821X</orcidid><orcidid>https://orcid.org/0009-0006-0689-7834</orcidid><orcidid>https://orcid.org/0000-0002-0308-3994</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0257 |
ispartof | Journal of non-Newtonian fluid mechanics, 2024-09, Vol.331, p.105286, Article 105286 |
issn | 0377-0257 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jnnfm_2024_105286 |
source | ScienceDirect Freedom Collection |
subjects | BMP model Cetyltrimethylammonium tosylate Cox–Merz rule Fast-breaking regime Light scattering patterns Worm-like micelles |
title | Rheo-optics of giant micelles: SALS patterns of cetyltrimethylammonium tosylate solutions in presence of sodium bromide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheo-optics%20of%20giant%20micelles:%20SALS%20patterns%20of%20cetyltrimethylammonium%20tosylate%20solutions%20in%20presence%20of%20sodium%20bromide&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Romero-Ure%C3%B1a,%20Mois%C3%A9s&rft.date=2024-09&rft.volume=331&rft.spage=105286&rft.pages=105286-&rft.artnum=105286&rft.issn=0377-0257&rft_id=info:doi/10.1016/j.jnnfm.2024.105286&rft_dat=%3Celsevier_cross%3ES0377025724001022%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c183t-f5202cef25cd4bcefd58a73c7885874b7dd116acff59d43fd37c90c7d9c819c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |