Loading…
Volume and enthalpy relaxation of a-Se in the glass transition region
Volume and enthalpy relaxation studies of amorphous Se have been performed in the glass transition region by mercury dilatometry and differential scanning calorimetry. For simple temperature jump experiments, as well as for more complex thermal history the volume and enthalpy relaxation data can be...
Saved in:
Published in: | Journal of non-crystalline solids 2009-02, Vol.355 (4), p.264-272 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Volume and enthalpy relaxation studies of amorphous Se have been performed in the glass transition region by mercury dilatometry and differential scanning calorimetry. For simple temperature jump experiments, as well as for more complex thermal history the volume and enthalpy relaxation data can be described by a single set of kinetic parameters for Tool-Naraynaswamy-Moynihan (TNM) model [Δ
h
∗
/
R
=
42.8
kK, ln(
A
TNM
/s)
=
−133]. Slightly different non-linearity and non-exponentiality parameter were found for volume [
x
=
0.42,
β
=
0.58] and enthalpy [
x
=
0.52,
β
=
0.65] relaxation data. Similar results were obtained also for Adam-Gibbs-Scherer (AGS) model. The activation energy of viscous flow in the glass transition range is identical with the effective activation energy for relaxation process. A self-consistent data evaluation shows that at moderate departure from equilibrium, volume and enthalpy in amorphous selenium relax in the same way as expressed by TNM and AGS models. Both volume and enthalpy change can be interpreted within the same fictive temperature concept. |
---|---|
ISSN: | 0022-3093 1873-4812 |
DOI: | 10.1016/j.jnoncrysol.2008.11.014 |