Loading…

A correlation-based approach for evaluating mechanical properties of nuclear fuel cladding tubes

The present work offers and evaluates a correlation-based approach to determine the tensile properties of nuclear fuel cladding tubes. A set of model materials with known properties (i.e., austenitic and ferritic steels, fcc- and hcp-alloys) were tested to build a correlation between conventional te...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2023-02, Vol.574, p.154192, Article 154192
Main Authors: Gussev, M.N., Garrison, B., Massey, C., Coq, A. Le, Linton, K., Terrani, K.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present work offers and evaluates a correlation-based approach to determine the tensile properties of nuclear fuel cladding tubes. A set of model materials with known properties (i.e., austenitic and ferritic steels, fcc- and hcp-alloys) were tested to build a correlation between conventional tensile tests and ring (hoop) and tube (axial) tests. It was shown that close-to-linear relationships exist for the basic mechanical properties (i.e., yield and ultimate stress, uniform and total elongation) between the uniaxial tensile test data and the ring and tube test data. Using the ring and tube specimen geometries, the feasibility of the approach was demonstrated via manufacturing and testing specimens from irradiated Zr and FeCrAl nuclear fuel cladding tubes. Limitations caused by specific deformation mechanisms (e.g., high ductility of 304L steel) were discussed in detail. The approach can be extended to other tubular products with different geometry and dimensions.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2022.154192