Loading…

A laboratory-scale process for producing dilithium beryllium tetrafluoride (FLiBe) with dissolved uranium tetrafluoride

•Simulated LFTR fuel (FLiBe/U) successfully prepared from NH4BeF4, LiF, and UF4.•BeF2 is prepared by thermal decomposition of NH4BeF4 (ABeF).•HF is required to protect UF4 from oxidation during FLiBe production.•Adequate carrier gas flow and temperature required to manage NH3 and HF off-gases. Flibe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2023-11, Vol.585, p.154636, Article 154636
Main Authors: Scheele, Randall D., Okabe, Parker K., McNamara, Bruce K., Sinkov, Sergey I., Sorensen, Kirk F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c257t-c8f6f39d38aa9a2d4b21a635fae106848b7166ed6b46f8dd74b1302704d314673
container_end_page
container_issue
container_start_page 154636
container_title Journal of nuclear materials
container_volume 585
creator Scheele, Randall D.
Okabe, Parker K.
McNamara, Bruce K.
Sinkov, Sergey I.
Sorensen, Kirk F.
description •Simulated LFTR fuel (FLiBe/U) successfully prepared from NH4BeF4, LiF, and UF4.•BeF2 is prepared by thermal decomposition of NH4BeF4 (ABeF).•HF is required to protect UF4 from oxidation during FLiBe production.•Adequate carrier gas flow and temperature required to manage NH3 and HF off-gases. Flibe Energy, Incorporated (FEI)'s conceptual Lithium Fluoride Thorium Reactor (LFTR) incorporates a chemical processing facility aimed at recovering uranium and other valuable volatile radionuclides while managing harmful radionuclides from the used fuel. The fuel utilized in this reactor is a combination of dilithium beryllium tetrafluoride (Li2BeF4 or FLiBe) and uranium tetrafluoride (UF4), (FLiBe/U). FEI's plan involves extracting the uranium and other valuable volatile fluoride-forming radionuclides using nitrogen trifluoride (NF3). To facilitate laboratory-scale testing of uranium extraction using NF3 and address the toxicity and physical hazards associated with beryllium and beryllium fluoride (BeF2), we used a two-step process to prepare the simulated fuel salt. The first step entailed thermally decomposing ammonium beryllium tetrafluoride [(NH4)2BeF4] (ABeF) through a nominal 3-step process, combined with appropriate amounts of lithium fluoride (LiF) and UF4, resulting in the formation of beryllium fluoride (BeF2). In the second step, the mixture was repeatedly melted and frozen at the melting point of FLiBe to prepare the eutectic FLiBe with dissolved UF4. Although the concept appears straightforward, the production of FLiBe/U involved various challenges. These challenges included transporting the gaseous decomposition products of ABeF, hydrogen fluoride (HF) and ammonia (NH3), while preventing the formation of ammonium fluoride (NH4F). Additionally, it was necessary to control the reaction between the higher-than-anticipated water content in the commercial ABeF with NH3, HF, and the condensed NH4F, protect UF4 from forming an unknown black compound, select suitable structural materials to mitigate fluoride corrosion, address the risks associated with beryllium toxicity through equipment design and operational protocols, and monitor process conditions. This article provides an account of the thermal decomposition chemistry observed in the commercial ABeF, describes the FLiBe/U production apparatus, describes the experiences and process refinements developed to prepare FLiBe/U, and presents our characterizations of prepared FLiBe/U. [Display omitted]
doi_str_mv 10.1016/j.jnucmat.2023.154636
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jnucmat_2023_154636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311523004038</els_id><sourcerecordid>S0022311523004038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-c8f6f39d38aa9a2d4b21a635fae106848b7166ed6b46f8dd74b1302704d314673</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqXwE5A8wpDgrzjphAqigFSJBWbLsZ_BkZtUdtKq_55E7cbA9O5w7tXTQeiWkpwSKh-avGkHs9F9zgjjOS2E5PIMzWhV8kxUjJyjGSGMZZzS4hJdpdQQQooFKWZov8RB113UfRcPWTI6AN7GzkBK2HVxynYwvv3G1gff__hhg2uIhxCm1EMftQtDF70FfLda-ye4x_uRG_GUurADi4eo2z_wNbpwOiS4Od05-lq9fD6_ZeuP1_fn5TozrCj7zFROOr6wvNJ6oZkVNaNa8sJpoERWoqpLKiVYWQvpKmtLUVNOWEmE5VTIks9Rcdw1sUspglPb6Dc6HhQlarKnGnWypyZ76mhv7D0eezA-t_MQVTIeWgPWRzC9sp3_Z-EXQdp-LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A laboratory-scale process for producing dilithium beryllium tetrafluoride (FLiBe) with dissolved uranium tetrafluoride</title><source>Elsevier</source><creator>Scheele, Randall D. ; Okabe, Parker K. ; McNamara, Bruce K. ; Sinkov, Sergey I. ; Sorensen, Kirk F.</creator><creatorcontrib>Scheele, Randall D. ; Okabe, Parker K. ; McNamara, Bruce K. ; Sinkov, Sergey I. ; Sorensen, Kirk F.</creatorcontrib><description>•Simulated LFTR fuel (FLiBe/U) successfully prepared from NH4BeF4, LiF, and UF4.•BeF2 is prepared by thermal decomposition of NH4BeF4 (ABeF).•HF is required to protect UF4 from oxidation during FLiBe production.•Adequate carrier gas flow and temperature required to manage NH3 and HF off-gases. Flibe Energy, Incorporated (FEI)'s conceptual Lithium Fluoride Thorium Reactor (LFTR) incorporates a chemical processing facility aimed at recovering uranium and other valuable volatile radionuclides while managing harmful radionuclides from the used fuel. The fuel utilized in this reactor is a combination of dilithium beryllium tetrafluoride (Li2BeF4 or FLiBe) and uranium tetrafluoride (UF4), (FLiBe/U). FEI's plan involves extracting the uranium and other valuable volatile fluoride-forming radionuclides using nitrogen trifluoride (NF3). To facilitate laboratory-scale testing of uranium extraction using NF3 and address the toxicity and physical hazards associated with beryllium and beryllium fluoride (BeF2), we used a two-step process to prepare the simulated fuel salt. The first step entailed thermally decomposing ammonium beryllium tetrafluoride [(NH4)2BeF4] (ABeF) through a nominal 3-step process, combined with appropriate amounts of lithium fluoride (LiF) and UF4, resulting in the formation of beryllium fluoride (BeF2). In the second step, the mixture was repeatedly melted and frozen at the melting point of FLiBe to prepare the eutectic FLiBe with dissolved UF4. Although the concept appears straightforward, the production of FLiBe/U involved various challenges. These challenges included transporting the gaseous decomposition products of ABeF, hydrogen fluoride (HF) and ammonia (NH3), while preventing the formation of ammonium fluoride (NH4F). Additionally, it was necessary to control the reaction between the higher-than-anticipated water content in the commercial ABeF with NH3, HF, and the condensed NH4F, protect UF4 from forming an unknown black compound, select suitable structural materials to mitigate fluoride corrosion, address the risks associated with beryllium toxicity through equipment design and operational protocols, and monitor process conditions. This article provides an account of the thermal decomposition chemistry observed in the commercial ABeF, describes the FLiBe/U production apparatus, describes the experiences and process refinements developed to prepare FLiBe/U, and presents our characterizations of prepared FLiBe/U. [Display omitted]</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2023.154636</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ammonium beryllium fluoride thermal decomposition ; FLiBe ; Generation IV nuclear reactor ; LFTR ; Lithium beryllium fluoride uranium tetrafluoride ; Lithium fluoride beryllium fluoride ; Lithium fluoride thorium reactor ; Molten salt reactor ; Molten salt reactor fuel salt ; MSR</subject><ispartof>Journal of nuclear materials, 2023-11, Vol.585, p.154636, Article 154636</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-c8f6f39d38aa9a2d4b21a635fae106848b7166ed6b46f8dd74b1302704d314673</cites><orcidid>0000-0002-7312-1773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Scheele, Randall D.</creatorcontrib><creatorcontrib>Okabe, Parker K.</creatorcontrib><creatorcontrib>McNamara, Bruce K.</creatorcontrib><creatorcontrib>Sinkov, Sergey I.</creatorcontrib><creatorcontrib>Sorensen, Kirk F.</creatorcontrib><title>A laboratory-scale process for producing dilithium beryllium tetrafluoride (FLiBe) with dissolved uranium tetrafluoride</title><title>Journal of nuclear materials</title><description>•Simulated LFTR fuel (FLiBe/U) successfully prepared from NH4BeF4, LiF, and UF4.•BeF2 is prepared by thermal decomposition of NH4BeF4 (ABeF).•HF is required to protect UF4 from oxidation during FLiBe production.•Adequate carrier gas flow and temperature required to manage NH3 and HF off-gases. Flibe Energy, Incorporated (FEI)'s conceptual Lithium Fluoride Thorium Reactor (LFTR) incorporates a chemical processing facility aimed at recovering uranium and other valuable volatile radionuclides while managing harmful radionuclides from the used fuel. The fuel utilized in this reactor is a combination of dilithium beryllium tetrafluoride (Li2BeF4 or FLiBe) and uranium tetrafluoride (UF4), (FLiBe/U). FEI's plan involves extracting the uranium and other valuable volatile fluoride-forming radionuclides using nitrogen trifluoride (NF3). To facilitate laboratory-scale testing of uranium extraction using NF3 and address the toxicity and physical hazards associated with beryllium and beryllium fluoride (BeF2), we used a two-step process to prepare the simulated fuel salt. The first step entailed thermally decomposing ammonium beryllium tetrafluoride [(NH4)2BeF4] (ABeF) through a nominal 3-step process, combined with appropriate amounts of lithium fluoride (LiF) and UF4, resulting in the formation of beryllium fluoride (BeF2). In the second step, the mixture was repeatedly melted and frozen at the melting point of FLiBe to prepare the eutectic FLiBe with dissolved UF4. Although the concept appears straightforward, the production of FLiBe/U involved various challenges. These challenges included transporting the gaseous decomposition products of ABeF, hydrogen fluoride (HF) and ammonia (NH3), while preventing the formation of ammonium fluoride (NH4F). Additionally, it was necessary to control the reaction between the higher-than-anticipated water content in the commercial ABeF with NH3, HF, and the condensed NH4F, protect UF4 from forming an unknown black compound, select suitable structural materials to mitigate fluoride corrosion, address the risks associated with beryllium toxicity through equipment design and operational protocols, and monitor process conditions. This article provides an account of the thermal decomposition chemistry observed in the commercial ABeF, describes the FLiBe/U production apparatus, describes the experiences and process refinements developed to prepare FLiBe/U, and presents our characterizations of prepared FLiBe/U. [Display omitted]</description><subject>Ammonium beryllium fluoride thermal decomposition</subject><subject>FLiBe</subject><subject>Generation IV nuclear reactor</subject><subject>LFTR</subject><subject>Lithium beryllium fluoride uranium tetrafluoride</subject><subject>Lithium fluoride beryllium fluoride</subject><subject>Lithium fluoride thorium reactor</subject><subject>Molten salt reactor</subject><subject>Molten salt reactor fuel salt</subject><subject>MSR</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqXwE5A8wpDgrzjphAqigFSJBWbLsZ_BkZtUdtKq_55E7cbA9O5w7tXTQeiWkpwSKh-avGkHs9F9zgjjOS2E5PIMzWhV8kxUjJyjGSGMZZzS4hJdpdQQQooFKWZov8RB113UfRcPWTI6AN7GzkBK2HVxynYwvv3G1gff__hhg2uIhxCm1EMftQtDF70FfLda-ye4x_uRG_GUurADi4eo2z_wNbpwOiS4Od05-lq9fD6_ZeuP1_fn5TozrCj7zFROOr6wvNJ6oZkVNaNa8sJpoERWoqpLKiVYWQvpKmtLUVNOWEmE5VTIks9Rcdw1sUspglPb6Dc6HhQlarKnGnWypyZ76mhv7D0eezA-t_MQVTIeWgPWRzC9sp3_Z-EXQdp-LQ</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Scheele, Randall D.</creator><creator>Okabe, Parker K.</creator><creator>McNamara, Bruce K.</creator><creator>Sinkov, Sergey I.</creator><creator>Sorensen, Kirk F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7312-1773</orcidid></search><sort><creationdate>202311</creationdate><title>A laboratory-scale process for producing dilithium beryllium tetrafluoride (FLiBe) with dissolved uranium tetrafluoride</title><author>Scheele, Randall D. ; Okabe, Parker K. ; McNamara, Bruce K. ; Sinkov, Sergey I. ; Sorensen, Kirk F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-c8f6f39d38aa9a2d4b21a635fae106848b7166ed6b46f8dd74b1302704d314673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonium beryllium fluoride thermal decomposition</topic><topic>FLiBe</topic><topic>Generation IV nuclear reactor</topic><topic>LFTR</topic><topic>Lithium beryllium fluoride uranium tetrafluoride</topic><topic>Lithium fluoride beryllium fluoride</topic><topic>Lithium fluoride thorium reactor</topic><topic>Molten salt reactor</topic><topic>Molten salt reactor fuel salt</topic><topic>MSR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheele, Randall D.</creatorcontrib><creatorcontrib>Okabe, Parker K.</creatorcontrib><creatorcontrib>McNamara, Bruce K.</creatorcontrib><creatorcontrib>Sinkov, Sergey I.</creatorcontrib><creatorcontrib>Sorensen, Kirk F.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheele, Randall D.</au><au>Okabe, Parker K.</au><au>McNamara, Bruce K.</au><au>Sinkov, Sergey I.</au><au>Sorensen, Kirk F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A laboratory-scale process for producing dilithium beryllium tetrafluoride (FLiBe) with dissolved uranium tetrafluoride</atitle><jtitle>Journal of nuclear materials</jtitle><date>2023-11</date><risdate>2023</risdate><volume>585</volume><spage>154636</spage><pages>154636-</pages><artnum>154636</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>•Simulated LFTR fuel (FLiBe/U) successfully prepared from NH4BeF4, LiF, and UF4.•BeF2 is prepared by thermal decomposition of NH4BeF4 (ABeF).•HF is required to protect UF4 from oxidation during FLiBe production.•Adequate carrier gas flow and temperature required to manage NH3 and HF off-gases. Flibe Energy, Incorporated (FEI)'s conceptual Lithium Fluoride Thorium Reactor (LFTR) incorporates a chemical processing facility aimed at recovering uranium and other valuable volatile radionuclides while managing harmful radionuclides from the used fuel. The fuel utilized in this reactor is a combination of dilithium beryllium tetrafluoride (Li2BeF4 or FLiBe) and uranium tetrafluoride (UF4), (FLiBe/U). FEI's plan involves extracting the uranium and other valuable volatile fluoride-forming radionuclides using nitrogen trifluoride (NF3). To facilitate laboratory-scale testing of uranium extraction using NF3 and address the toxicity and physical hazards associated with beryllium and beryllium fluoride (BeF2), we used a two-step process to prepare the simulated fuel salt. The first step entailed thermally decomposing ammonium beryllium tetrafluoride [(NH4)2BeF4] (ABeF) through a nominal 3-step process, combined with appropriate amounts of lithium fluoride (LiF) and UF4, resulting in the formation of beryllium fluoride (BeF2). In the second step, the mixture was repeatedly melted and frozen at the melting point of FLiBe to prepare the eutectic FLiBe with dissolved UF4. Although the concept appears straightforward, the production of FLiBe/U involved various challenges. These challenges included transporting the gaseous decomposition products of ABeF, hydrogen fluoride (HF) and ammonia (NH3), while preventing the formation of ammonium fluoride (NH4F). Additionally, it was necessary to control the reaction between the higher-than-anticipated water content in the commercial ABeF with NH3, HF, and the condensed NH4F, protect UF4 from forming an unknown black compound, select suitable structural materials to mitigate fluoride corrosion, address the risks associated with beryllium toxicity through equipment design and operational protocols, and monitor process conditions. This article provides an account of the thermal decomposition chemistry observed in the commercial ABeF, describes the FLiBe/U production apparatus, describes the experiences and process refinements developed to prepare FLiBe/U, and presents our characterizations of prepared FLiBe/U. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2023.154636</doi><orcidid>https://orcid.org/0000-0002-7312-1773</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2023-11, Vol.585, p.154636, Article 154636
issn 0022-3115
1873-4820
language eng
recordid cdi_crossref_primary_10_1016_j_jnucmat_2023_154636
source Elsevier
subjects Ammonium beryllium fluoride thermal decomposition
FLiBe
Generation IV nuclear reactor
LFTR
Lithium beryllium fluoride uranium tetrafluoride
Lithium fluoride beryllium fluoride
Lithium fluoride thorium reactor
Molten salt reactor
Molten salt reactor fuel salt
MSR
title A laboratory-scale process for producing dilithium beryllium tetrafluoride (FLiBe) with dissolved uranium tetrafluoride
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20laboratory-scale%20process%20for%20producing%20dilithium%20beryllium%20tetrafluoride%20(FLiBe)%20with%20dissolved%20uranium%20tetrafluoride&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Scheele,%20Randall%20D.&rft.date=2023-11&rft.volume=585&rft.spage=154636&rft.pages=154636-&rft.artnum=154636&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2023.154636&rft_dat=%3Celsevier_cross%3ES0022311523004038%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-c8f6f39d38aa9a2d4b21a635fae106848b7166ed6b46f8dd74b1302704d314673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true