Loading…
On the theory of the nucleation of gas bubbles at grain boundaries and incoherent inclusions
On the base of the critical analysis of two-dimensional models of the nucleation of gas filled bubbles at grain boundaries of helium-implanted specimens under the action of tensile stresses, a new model is developed within the framework of the Reiss theory of homogeneous nucleation in binary systems...
Saved in:
Published in: | Journal of nuclear materials 2025-01, Vol.603, p.155443, Article 155443 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | On the base of the critical analysis of two-dimensional models of the nucleation of gas filled bubbles at grain boundaries of helium-implanted specimens under the action of tensile stresses, a new model is developed within the framework of the Reiss theory of homogeneous nucleation in binary systems. This approach considers that gas bubbles are formed as a result of agglomeration in a binary system of vacancies and gas atoms at grain boundaries, avoiding significant simplifications of previous models based on the classical nucleation theory for single-component (unary) systems. The new model is extended to consider the nucleation of Xe bubbles at grain boundaries in UO2 under irradiation conditions and can be used for numerical analysis of experimental observations after the foreseen implementation in a fuel performance code. A similar approach can be applied to the nucleation and growth of gas bubbles on incoherent inclusions, such as those observed in irradiated ODS steels. |
---|---|
ISSN: | 0022-3115 |
DOI: | 10.1016/j.jnucmat.2024.155443 |