Loading…

Compressive strength prediction of environmentally friendly concrete using artificial neural networks

Solid waste in the form of construction debris is one of the major environmental concerns in the world. Over 20 million tons of construction waste materials are generated in Tehran each year. A large amount of these materials can be recycled and reused as recycled aggregate concrete (RAC) for genera...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Building Engineering 2018-03, Vol.16, p.213-219
Main Authors: Naderpour, Hosein, Rafiean, Amir Hossein, Fakharian, Pouyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solid waste in the form of construction debris is one of the major environmental concerns in the world. Over 20 million tons of construction waste materials are generated in Tehran each year. A large amount of these materials can be recycled and reused as recycled aggregate concrete (RAC) for general construction, pavement and a growing number of other works that drive the demand for RAC. This paper aims to predict RAC compressive strength by using Artificial Neural Network (ANN). The training and testing data for ANN model development were prepared using 139 existing sets of data derived from 14 published literature sources. The developed ANN model uses six input features namely water cement ratio, water absorption, fine aggregate, natural coarse aggregate, recycled coarse aggregate, water-total material ratio. The ANN is modelled in MATLAB and applied to predict the compressive strength of RAC given the foregoing input features. The results indicate that the ANN is an efficient model to be used as a tool in order to predict the compressive strength of RAC which is comprised of different types and sources of recycled aggregates.
ISSN:2352-7102
2352-7102
DOI:10.1016/j.jobe.2018.01.007