Loading…
Use of date palm waste fibers as sound absorption material
An increasing interest in the possibilities of converting agricultural wastes to value-added products has emerged. Annually, 200,000 tons of date palm waste are generated, which are charred or released as agricultural wastes. This work describes the efforts to fabricate low-cost sound-absorbing pane...
Saved in:
Published in: | Journal of Building Engineering 2021-09, Vol.41, p.102752, Article 102752 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An increasing interest in the possibilities of converting agricultural wastes to value-added products has emerged. Annually, 200,000 tons of date palm waste are generated, which are charred or released as agricultural wastes. This work describes the efforts to fabricate low-cost sound-absorbing panels from date palm waste fibers and assess their performance for sound absorbing applications. Samples of different thicknesses (25, 35, 45, and 55 mm) and densities (125 and 175 kg/m3) were produced. The normal-incidence sound absorption coefficient was measured using the impedance tube and was modeled using both the Johnson-Champoux-Allard and the Attenborough models. The findings show that the samples with a thickness of 55 mm and a density of 175 kg/m3 have the highest sound absorbing performance. The acoustic behavior of this new material was investigated in a reverberation room. Moreover, the acoustic performance of the panels in a conference hall was modeled, assessing the improvements in its reverberation time (RT), early decay time (EDT), speech transmission index (STI), clarity (C80), and definition (D50). Finally, this paper shows that the acoustic performance of this material can be used to enhance room acoustics properties.
•Normal and random sound absorption coefficients of the date palm fibers were investigated.•JCA and Attenborough models were compared with experimental data for sound absorption.•JCA model have a good agreement with the experimental data.•The performance of the optimized acoustic panels was investigated using ODEON software. |
---|---|
ISSN: | 2352-7102 2352-7102 |
DOI: | 10.1016/j.jobe.2021.102752 |