Loading…
Seismic performance of a new type of precast shear walls with non-connected vertical distributed reinforcement
To eliminate the shortcomings in the grouting sleeve and other connection forms in precast concrete shear wall structure induced by the poor grouting, difficult quality assurance, low construction efficiency, and high cost, a new type of monolithic assembled concrete shear wall structure with non-co...
Saved in:
Published in: | Journal of Building Engineering 2021-12, Vol.44, p.103219, Article 103219 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To eliminate the shortcomings in the grouting sleeve and other connection forms in precast concrete shear wall structure induced by the poor grouting, difficult quality assurance, low construction efficiency, and high cost, a new type of monolithic assembled concrete shear wall structure with non-connected vertical distributed reinforcement was proposed in this paper. The new shear wall structure is composed of middle precast wall panels and cast-in-place boundary members. The vertical distributed reinforcement in the middle precast wall panels is not connected between the upper and lower floors. This technique was based on the normal section bearing capacity of equal strength and inclined section bearing capacity of equal strength compared with the cast-in-place shear wall structure. Three full-scale models of precast shear walls and one cast-in-place contrast specimen were tested for their seismic performance under pseudo-static loading. All precast specimens are cast based on the manufacture specification of the factory. By analysis of test results, including the failure modes, load-lateral drift hysteresis curves, bearing capacity, hysteretic characteristics, deformation components, ductility, rigidity degeneration, energy dissipation, and strain distribution, all the specimens were obtained and compared. Comparisons between test results indicate that the proposed shear walls have a similar bearing capacity as that of the cast-in-place shear wall and improved energy dissipation and ductility. Moreover, the specimen with inclined reinforcement performs better in drift capacity compared to companion specimens. The contribution of flexural deformation to the total displacement of each specimen is the largest, follow by the contribution of shear deformation, and the contribution of slip is the smallest. The strain of non-connected vertical distributed reinforcement of the precast panel did not yield during the loading process. The cross-section of the precast shear wall panel conforms to the assumption of plane cross-section according to the strain distribution before the reinforcement yields.
•A new monolithic assembled precast concrete shear wall with non-connected vertical distribution reinforcement was proposed.•The bearing capacity of the new wall is guaranteed by increasing the longitudinal reinforcement of the boundary member.•Four full-scale shear walls were tested to verify their seismic performance. |
---|---|
ISSN: | 2352-7102 2352-7102 |
DOI: | 10.1016/j.jobe.2021.103219 |