Loading…

CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities

In-kitchen air pollution is a leading environmental issue, attributable to extensive cooking, poor ventilation and the use of polluting fuels. We carried out a week-long monitoring of CO2, temperature and relative humidity (RH) in five low-income residential kitchens of 12 global cities (Dhaka, Chen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Building Engineering 2022-12, Vol.61, p.105254, Article 105254
Main Authors: Kumar, Prashant, Hama, Sarkawt, Abbass, Rana Alaa, Nogueira, Thiago, Brand, Veronika S., Wu, Huai-Wen, Abulude, Francis Olawale, Adelodun, Adedeji A., de Fatima Andrade, Maria, Asfaw, Araya, Aziz, Kosar Hama, Cao, Shi-Jie, El-Gendy, Ahmed, Indu, Gopika, Kehbila, Anderson Gwanyebit, Mustafa, Fryad, Muula, Adamson S., Nahian, Samiha, Nardocci, Adelaide Cassia, Nelson, William, Ngowi, Aiwerasia V., Olaya, Yris, Omer, Khalid, Osano, Philip, Salam, Abdus, Shiva Nagendra, S.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23
cites cdi_FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23
container_end_page
container_issue
container_start_page 105254
container_title Journal of Building Engineering
container_volume 61
creator Kumar, Prashant
Hama, Sarkawt
Abbass, Rana Alaa
Nogueira, Thiago
Brand, Veronika S.
Wu, Huai-Wen
Abulude, Francis Olawale
Adelodun, Adedeji A.
de Fatima Andrade, Maria
Asfaw, Araya
Aziz, Kosar Hama
Cao, Shi-Jie
El-Gendy, Ahmed
Indu, Gopika
Kehbila, Anderson Gwanyebit
Mustafa, Fryad
Muula, Adamson S.
Nahian, Samiha
Nardocci, Adelaide Cassia
Nelson, William
Ngowi, Aiwerasia V.
Olaya, Yris
Omer, Khalid
Osano, Philip
Salam, Abdus
Shiva Nagendra, S.M.
description In-kitchen air pollution is a leading environmental issue, attributable to extensive cooking, poor ventilation and the use of polluting fuels. We carried out a week-long monitoring of CO2, temperature and relative humidity (RH) in five low-income residential kitchens of 12 global cities (Dhaka, Chennai, Nanjing, Medellín, São Paulo, Cairo, Sulaymaniyah, Addis Ababa, Nairobi, Blantyre, Akure and Dar-es-Salaam). During cooking, the average in-kitchen CO2 concentrations were 22.2% higher than the daily indoor average. Also, the highest CO2 was observed for NVd (natural ventilation-door only; 711 ± 302 ppm), followed by NVdw (natural ventilation-door + window; 690 ± 319 ppm) and DVmn (dual ventilation-mechanical + natural; 677 ± 219 ppm). Using LPG and electric appliances during cooking exhibited 32.2% less CO2 than kerosene. Larger kitchens (46–120 m3) evinced 28% and 20% less CO2 than medium (16–45 m3) and small (4–15 m3) ones, respectively. In-kitchen CO2 with >2 occupants during cooking was 7% higher than that with one occupant. 87% of total kitchens exceeded the ASHRAE standard (RH >40%, temperature >23 °C) for thermal comfort. Considering the ventilation type, both the ACH (air change rate per hour) and ventilation rate followed the order: NVdw > NVd > DVmn, while the trend for weekly average CO2 concentration was NVd > DVmn > NVdw. Larger kitchens presented 22% and 28% less ACH, and 82% and 190% higher ventilation rate than medium- and small-volume ones, respectively. Forty-three percent kitchens had ACH
doi_str_mv 10.1016/j.jobe.2022.105254
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jobe_2022_105254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352710222012608</els_id><sourcerecordid>S2352710222012608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7DyBzTBz6SR2KCKl1SpG1hbjjMhTt24sk0Lf0-ismDFZmbuaO7V6CB0S0lOCS3u-rz3NeSMMDYuJJPiAs0YlywrKWGXf-ZrtIixJ4SwSvJVIWbIr7cMw9fBx88AS3yEIVmnk_XDEqcOwl47bPy-9SFhPTS4A-1Sh4ONu4jtgJ0_ZXYYLwB3U9nZZDoYIvYtTidwR8AfztdTik0W4g26arWLsPjtc_T-9Pi2fsk22-fX9cMmM1yIlBXc1FVVEyCN5iVryYrLSkjGdSugHFUpqoZRYYDLVVnWLZUNaSQRQKgoasbniJ1zTfAxBmjVIdi9Dt-KEjVRU72aqKmJmjpTG033ZxOMnx0tBBWNhcFAYwOYpBpv_7P_AMp6dc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities</title><source>Elsevier</source><creator>Kumar, Prashant ; Hama, Sarkawt ; Abbass, Rana Alaa ; Nogueira, Thiago ; Brand, Veronika S. ; Wu, Huai-Wen ; Abulude, Francis Olawale ; Adelodun, Adedeji A. ; de Fatima Andrade, Maria ; Asfaw, Araya ; Aziz, Kosar Hama ; Cao, Shi-Jie ; El-Gendy, Ahmed ; Indu, Gopika ; Kehbila, Anderson Gwanyebit ; Mustafa, Fryad ; Muula, Adamson S. ; Nahian, Samiha ; Nardocci, Adelaide Cassia ; Nelson, William ; Ngowi, Aiwerasia V. ; Olaya, Yris ; Omer, Khalid ; Osano, Philip ; Salam, Abdus ; Shiva Nagendra, S.M.</creator><creatorcontrib>Kumar, Prashant ; Hama, Sarkawt ; Abbass, Rana Alaa ; Nogueira, Thiago ; Brand, Veronika S. ; Wu, Huai-Wen ; Abulude, Francis Olawale ; Adelodun, Adedeji A. ; de Fatima Andrade, Maria ; Asfaw, Araya ; Aziz, Kosar Hama ; Cao, Shi-Jie ; El-Gendy, Ahmed ; Indu, Gopika ; Kehbila, Anderson Gwanyebit ; Mustafa, Fryad ; Muula, Adamson S. ; Nahian, Samiha ; Nardocci, Adelaide Cassia ; Nelson, William ; Ngowi, Aiwerasia V. ; Olaya, Yris ; Omer, Khalid ; Osano, Philip ; Salam, Abdus ; Shiva Nagendra, S.M.</creatorcontrib><description>In-kitchen air pollution is a leading environmental issue, attributable to extensive cooking, poor ventilation and the use of polluting fuels. We carried out a week-long monitoring of CO2, temperature and relative humidity (RH) in five low-income residential kitchens of 12 global cities (Dhaka, Chennai, Nanjing, Medellín, São Paulo, Cairo, Sulaymaniyah, Addis Ababa, Nairobi, Blantyre, Akure and Dar-es-Salaam). During cooking, the average in-kitchen CO2 concentrations were 22.2% higher than the daily indoor average. Also, the highest CO2 was observed for NVd (natural ventilation-door only; 711 ± 302 ppm), followed by NVdw (natural ventilation-door + window; 690 ± 319 ppm) and DVmn (dual ventilation-mechanical + natural; 677 ± 219 ppm). Using LPG and electric appliances during cooking exhibited 32.2% less CO2 than kerosene. Larger kitchens (46–120 m3) evinced 28% and 20% less CO2 than medium (16–45 m3) and small (4–15 m3) ones, respectively. In-kitchen CO2 with &gt;2 occupants during cooking was 7% higher than that with one occupant. 87% of total kitchens exceeded the ASHRAE standard (RH &gt;40%, temperature &gt;23 °C) for thermal comfort. Considering the ventilation type, both the ACH (air change rate per hour) and ventilation rate followed the order: NVdw &gt; NVd &gt; DVmn, while the trend for weekly average CO2 concentration was NVd &gt; DVmn &gt; NVdw. Larger kitchens presented 22% and 28% less ACH, and 82% and 190% higher ventilation rate than medium- and small-volume ones, respectively. Forty-three percent kitchens had ACH &lt;3 h−1 and ventilation rate &lt;4 L/s/person, hence violated the conditions for ideal ventilation. Moreover, 10% of the Hazard Ratio values for 25% kitchens exceeded the CO2 reference value (1000 ppm). Consequently, our findings prompted several recommendations towards improving in-kitchen ventilation and environmental conditions of low-income homes. [Display omitted] •In-kitchen CO2 exposure in 60 low-income homes across twelve major cities was measured.•Larger volume kitchens exhibited 28% less CO2 concentrations than the medium-sized ones.•Dual (mechanical + natural) ventilation resulted in improved thermal comfort during cooking.•Large-volume (&gt;45 m3) kitchens using natural gas/natural ventilation met daily proper ventilation.•Hazard ratio was above the standard limit in 25% of the investigated kitchens.</description><identifier>ISSN: 2352-7102</identifier><identifier>EISSN: 2352-7102</identifier><identifier>DOI: 10.1016/j.jobe.2022.105254</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>CArE-homes project ; CO2 and ventilation ; Low-income homes ; Sustainable development goals ; Sustainable urban design ; Thermal comfort</subject><ispartof>Journal of Building Engineering, 2022-12, Vol.61, p.105254, Article 105254</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23</citedby><cites>FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23</cites><orcidid>0000-0001-9136-0949 ; 0000-0001-8796-781X ; 0000-0001-5143-0658 ; 0000-0001-7042-7534 ; 0000-0002-2462-4411 ; 0000-0002-0372-3373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Hama, Sarkawt</creatorcontrib><creatorcontrib>Abbass, Rana Alaa</creatorcontrib><creatorcontrib>Nogueira, Thiago</creatorcontrib><creatorcontrib>Brand, Veronika S.</creatorcontrib><creatorcontrib>Wu, Huai-Wen</creatorcontrib><creatorcontrib>Abulude, Francis Olawale</creatorcontrib><creatorcontrib>Adelodun, Adedeji A.</creatorcontrib><creatorcontrib>de Fatima Andrade, Maria</creatorcontrib><creatorcontrib>Asfaw, Araya</creatorcontrib><creatorcontrib>Aziz, Kosar Hama</creatorcontrib><creatorcontrib>Cao, Shi-Jie</creatorcontrib><creatorcontrib>El-Gendy, Ahmed</creatorcontrib><creatorcontrib>Indu, Gopika</creatorcontrib><creatorcontrib>Kehbila, Anderson Gwanyebit</creatorcontrib><creatorcontrib>Mustafa, Fryad</creatorcontrib><creatorcontrib>Muula, Adamson S.</creatorcontrib><creatorcontrib>Nahian, Samiha</creatorcontrib><creatorcontrib>Nardocci, Adelaide Cassia</creatorcontrib><creatorcontrib>Nelson, William</creatorcontrib><creatorcontrib>Ngowi, Aiwerasia V.</creatorcontrib><creatorcontrib>Olaya, Yris</creatorcontrib><creatorcontrib>Omer, Khalid</creatorcontrib><creatorcontrib>Osano, Philip</creatorcontrib><creatorcontrib>Salam, Abdus</creatorcontrib><creatorcontrib>Shiva Nagendra, S.M.</creatorcontrib><title>CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities</title><title>Journal of Building Engineering</title><description>In-kitchen air pollution is a leading environmental issue, attributable to extensive cooking, poor ventilation and the use of polluting fuels. We carried out a week-long monitoring of CO2, temperature and relative humidity (RH) in five low-income residential kitchens of 12 global cities (Dhaka, Chennai, Nanjing, Medellín, São Paulo, Cairo, Sulaymaniyah, Addis Ababa, Nairobi, Blantyre, Akure and Dar-es-Salaam). During cooking, the average in-kitchen CO2 concentrations were 22.2% higher than the daily indoor average. Also, the highest CO2 was observed for NVd (natural ventilation-door only; 711 ± 302 ppm), followed by NVdw (natural ventilation-door + window; 690 ± 319 ppm) and DVmn (dual ventilation-mechanical + natural; 677 ± 219 ppm). Using LPG and electric appliances during cooking exhibited 32.2% less CO2 than kerosene. Larger kitchens (46–120 m3) evinced 28% and 20% less CO2 than medium (16–45 m3) and small (4–15 m3) ones, respectively. In-kitchen CO2 with &gt;2 occupants during cooking was 7% higher than that with one occupant. 87% of total kitchens exceeded the ASHRAE standard (RH &gt;40%, temperature &gt;23 °C) for thermal comfort. Considering the ventilation type, both the ACH (air change rate per hour) and ventilation rate followed the order: NVdw &gt; NVd &gt; DVmn, while the trend for weekly average CO2 concentration was NVd &gt; DVmn &gt; NVdw. Larger kitchens presented 22% and 28% less ACH, and 82% and 190% higher ventilation rate than medium- and small-volume ones, respectively. Forty-three percent kitchens had ACH &lt;3 h−1 and ventilation rate &lt;4 L/s/person, hence violated the conditions for ideal ventilation. Moreover, 10% of the Hazard Ratio values for 25% kitchens exceeded the CO2 reference value (1000 ppm). Consequently, our findings prompted several recommendations towards improving in-kitchen ventilation and environmental conditions of low-income homes. [Display omitted] •In-kitchen CO2 exposure in 60 low-income homes across twelve major cities was measured.•Larger volume kitchens exhibited 28% less CO2 concentrations than the medium-sized ones.•Dual (mechanical + natural) ventilation resulted in improved thermal comfort during cooking.•Large-volume (&gt;45 m3) kitchens using natural gas/natural ventilation met daily proper ventilation.•Hazard ratio was above the standard limit in 25% of the investigated kitchens.</description><subject>CArE-homes project</subject><subject>CO2 and ventilation</subject><subject>Low-income homes</subject><subject>Sustainable development goals</subject><subject>Sustainable urban design</subject><subject>Thermal comfort</subject><issn>2352-7102</issn><issn>2352-7102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7DyBzTBz6SR2KCKl1SpG1hbjjMhTt24sk0Lf0-ismDFZmbuaO7V6CB0S0lOCS3u-rz3NeSMMDYuJJPiAs0YlywrKWGXf-ZrtIixJ4SwSvJVIWbIr7cMw9fBx88AS3yEIVmnk_XDEqcOwl47bPy-9SFhPTS4A-1Sh4ONu4jtgJ0_ZXYYLwB3U9nZZDoYIvYtTidwR8AfztdTik0W4g26arWLsPjtc_T-9Pi2fsk22-fX9cMmM1yIlBXc1FVVEyCN5iVryYrLSkjGdSugHFUpqoZRYYDLVVnWLZUNaSQRQKgoasbniJ1zTfAxBmjVIdi9Dt-KEjVRU72aqKmJmjpTG033ZxOMnx0tBBWNhcFAYwOYpBpv_7P_AMp6dc4</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Kumar, Prashant</creator><creator>Hama, Sarkawt</creator><creator>Abbass, Rana Alaa</creator><creator>Nogueira, Thiago</creator><creator>Brand, Veronika S.</creator><creator>Wu, Huai-Wen</creator><creator>Abulude, Francis Olawale</creator><creator>Adelodun, Adedeji A.</creator><creator>de Fatima Andrade, Maria</creator><creator>Asfaw, Araya</creator><creator>Aziz, Kosar Hama</creator><creator>Cao, Shi-Jie</creator><creator>El-Gendy, Ahmed</creator><creator>Indu, Gopika</creator><creator>Kehbila, Anderson Gwanyebit</creator><creator>Mustafa, Fryad</creator><creator>Muula, Adamson S.</creator><creator>Nahian, Samiha</creator><creator>Nardocci, Adelaide Cassia</creator><creator>Nelson, William</creator><creator>Ngowi, Aiwerasia V.</creator><creator>Olaya, Yris</creator><creator>Omer, Khalid</creator><creator>Osano, Philip</creator><creator>Salam, Abdus</creator><creator>Shiva Nagendra, S.M.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9136-0949</orcidid><orcidid>https://orcid.org/0000-0001-8796-781X</orcidid><orcidid>https://orcid.org/0000-0001-5143-0658</orcidid><orcidid>https://orcid.org/0000-0001-7042-7534</orcidid><orcidid>https://orcid.org/0000-0002-2462-4411</orcidid><orcidid>https://orcid.org/0000-0002-0372-3373</orcidid></search><sort><creationdate>20221201</creationdate><title>CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities</title><author>Kumar, Prashant ; Hama, Sarkawt ; Abbass, Rana Alaa ; Nogueira, Thiago ; Brand, Veronika S. ; Wu, Huai-Wen ; Abulude, Francis Olawale ; Adelodun, Adedeji A. ; de Fatima Andrade, Maria ; Asfaw, Araya ; Aziz, Kosar Hama ; Cao, Shi-Jie ; El-Gendy, Ahmed ; Indu, Gopika ; Kehbila, Anderson Gwanyebit ; Mustafa, Fryad ; Muula, Adamson S. ; Nahian, Samiha ; Nardocci, Adelaide Cassia ; Nelson, William ; Ngowi, Aiwerasia V. ; Olaya, Yris ; Omer, Khalid ; Osano, Philip ; Salam, Abdus ; Shiva Nagendra, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CArE-homes project</topic><topic>CO2 and ventilation</topic><topic>Low-income homes</topic><topic>Sustainable development goals</topic><topic>Sustainable urban design</topic><topic>Thermal comfort</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Hama, Sarkawt</creatorcontrib><creatorcontrib>Abbass, Rana Alaa</creatorcontrib><creatorcontrib>Nogueira, Thiago</creatorcontrib><creatorcontrib>Brand, Veronika S.</creatorcontrib><creatorcontrib>Wu, Huai-Wen</creatorcontrib><creatorcontrib>Abulude, Francis Olawale</creatorcontrib><creatorcontrib>Adelodun, Adedeji A.</creatorcontrib><creatorcontrib>de Fatima Andrade, Maria</creatorcontrib><creatorcontrib>Asfaw, Araya</creatorcontrib><creatorcontrib>Aziz, Kosar Hama</creatorcontrib><creatorcontrib>Cao, Shi-Jie</creatorcontrib><creatorcontrib>El-Gendy, Ahmed</creatorcontrib><creatorcontrib>Indu, Gopika</creatorcontrib><creatorcontrib>Kehbila, Anderson Gwanyebit</creatorcontrib><creatorcontrib>Mustafa, Fryad</creatorcontrib><creatorcontrib>Muula, Adamson S.</creatorcontrib><creatorcontrib>Nahian, Samiha</creatorcontrib><creatorcontrib>Nardocci, Adelaide Cassia</creatorcontrib><creatorcontrib>Nelson, William</creatorcontrib><creatorcontrib>Ngowi, Aiwerasia V.</creatorcontrib><creatorcontrib>Olaya, Yris</creatorcontrib><creatorcontrib>Omer, Khalid</creatorcontrib><creatorcontrib>Osano, Philip</creatorcontrib><creatorcontrib>Salam, Abdus</creatorcontrib><creatorcontrib>Shiva Nagendra, S.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of Building Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Prashant</au><au>Hama, Sarkawt</au><au>Abbass, Rana Alaa</au><au>Nogueira, Thiago</au><au>Brand, Veronika S.</au><au>Wu, Huai-Wen</au><au>Abulude, Francis Olawale</au><au>Adelodun, Adedeji A.</au><au>de Fatima Andrade, Maria</au><au>Asfaw, Araya</au><au>Aziz, Kosar Hama</au><au>Cao, Shi-Jie</au><au>El-Gendy, Ahmed</au><au>Indu, Gopika</au><au>Kehbila, Anderson Gwanyebit</au><au>Mustafa, Fryad</au><au>Muula, Adamson S.</au><au>Nahian, Samiha</au><au>Nardocci, Adelaide Cassia</au><au>Nelson, William</au><au>Ngowi, Aiwerasia V.</au><au>Olaya, Yris</au><au>Omer, Khalid</au><au>Osano, Philip</au><au>Salam, Abdus</au><au>Shiva Nagendra, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities</atitle><jtitle>Journal of Building Engineering</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>61</volume><spage>105254</spage><pages>105254-</pages><artnum>105254</artnum><issn>2352-7102</issn><eissn>2352-7102</eissn><abstract>In-kitchen air pollution is a leading environmental issue, attributable to extensive cooking, poor ventilation and the use of polluting fuels. We carried out a week-long monitoring of CO2, temperature and relative humidity (RH) in five low-income residential kitchens of 12 global cities (Dhaka, Chennai, Nanjing, Medellín, São Paulo, Cairo, Sulaymaniyah, Addis Ababa, Nairobi, Blantyre, Akure and Dar-es-Salaam). During cooking, the average in-kitchen CO2 concentrations were 22.2% higher than the daily indoor average. Also, the highest CO2 was observed for NVd (natural ventilation-door only; 711 ± 302 ppm), followed by NVdw (natural ventilation-door + window; 690 ± 319 ppm) and DVmn (dual ventilation-mechanical + natural; 677 ± 219 ppm). Using LPG and electric appliances during cooking exhibited 32.2% less CO2 than kerosene. Larger kitchens (46–120 m3) evinced 28% and 20% less CO2 than medium (16–45 m3) and small (4–15 m3) ones, respectively. In-kitchen CO2 with &gt;2 occupants during cooking was 7% higher than that with one occupant. 87% of total kitchens exceeded the ASHRAE standard (RH &gt;40%, temperature &gt;23 °C) for thermal comfort. Considering the ventilation type, both the ACH (air change rate per hour) and ventilation rate followed the order: NVdw &gt; NVd &gt; DVmn, while the trend for weekly average CO2 concentration was NVd &gt; DVmn &gt; NVdw. Larger kitchens presented 22% and 28% less ACH, and 82% and 190% higher ventilation rate than medium- and small-volume ones, respectively. Forty-three percent kitchens had ACH &lt;3 h−1 and ventilation rate &lt;4 L/s/person, hence violated the conditions for ideal ventilation. Moreover, 10% of the Hazard Ratio values for 25% kitchens exceeded the CO2 reference value (1000 ppm). Consequently, our findings prompted several recommendations towards improving in-kitchen ventilation and environmental conditions of low-income homes. [Display omitted] •In-kitchen CO2 exposure in 60 low-income homes across twelve major cities was measured.•Larger volume kitchens exhibited 28% less CO2 concentrations than the medium-sized ones.•Dual (mechanical + natural) ventilation resulted in improved thermal comfort during cooking.•Large-volume (&gt;45 m3) kitchens using natural gas/natural ventilation met daily proper ventilation.•Hazard ratio was above the standard limit in 25% of the investigated kitchens.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jobe.2022.105254</doi><orcidid>https://orcid.org/0000-0001-9136-0949</orcidid><orcidid>https://orcid.org/0000-0001-8796-781X</orcidid><orcidid>https://orcid.org/0000-0001-5143-0658</orcidid><orcidid>https://orcid.org/0000-0001-7042-7534</orcidid><orcidid>https://orcid.org/0000-0002-2462-4411</orcidid><orcidid>https://orcid.org/0000-0002-0372-3373</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-7102
ispartof Journal of Building Engineering, 2022-12, Vol.61, p.105254, Article 105254
issn 2352-7102
2352-7102
language eng
recordid cdi_crossref_primary_10_1016_j_jobe_2022_105254
source Elsevier
subjects CArE-homes project
CO2 and ventilation
Low-income homes
Sustainable development goals
Sustainable urban design
Thermal comfort
title CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20exposure,%20ventilation,%20thermal%20comfort%20and%20health%20risks%20in%20low-income%20home%20kitchens%20of%20twelve%20global%20cities&rft.jtitle=Journal%20of%20Building%20Engineering&rft.au=Kumar,%20Prashant&rft.date=2022-12-01&rft.volume=61&rft.spage=105254&rft.pages=105254-&rft.artnum=105254&rft.issn=2352-7102&rft.eissn=2352-7102&rft_id=info:doi/10.1016/j.jobe.2022.105254&rft_dat=%3Celsevier_cross%3ES2352710222012608%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true