Loading…
CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities
In-kitchen air pollution is a leading environmental issue, attributable to extensive cooking, poor ventilation and the use of polluting fuels. We carried out a week-long monitoring of CO2, temperature and relative humidity (RH) in five low-income residential kitchens of 12 global cities (Dhaka, Chen...
Saved in:
Published in: | Journal of Building Engineering 2022-12, Vol.61, p.105254, Article 105254 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23 |
container_end_page | |
container_issue | |
container_start_page | 105254 |
container_title | Journal of Building Engineering |
container_volume | 61 |
creator | Kumar, Prashant Hama, Sarkawt Abbass, Rana Alaa Nogueira, Thiago Brand, Veronika S. Wu, Huai-Wen Abulude, Francis Olawale Adelodun, Adedeji A. de Fatima Andrade, Maria Asfaw, Araya Aziz, Kosar Hama Cao, Shi-Jie El-Gendy, Ahmed Indu, Gopika Kehbila, Anderson Gwanyebit Mustafa, Fryad Muula, Adamson S. Nahian, Samiha Nardocci, Adelaide Cassia Nelson, William Ngowi, Aiwerasia V. Olaya, Yris Omer, Khalid Osano, Philip Salam, Abdus Shiva Nagendra, S.M. |
description | In-kitchen air pollution is a leading environmental issue, attributable to extensive cooking, poor ventilation and the use of polluting fuels. We carried out a week-long monitoring of CO2, temperature and relative humidity (RH) in five low-income residential kitchens of 12 global cities (Dhaka, Chennai, Nanjing, Medellín, São Paulo, Cairo, Sulaymaniyah, Addis Ababa, Nairobi, Blantyre, Akure and Dar-es-Salaam). During cooking, the average in-kitchen CO2 concentrations were 22.2% higher than the daily indoor average. Also, the highest CO2 was observed for NVd (natural ventilation-door only; 711 ± 302 ppm), followed by NVdw (natural ventilation-door + window; 690 ± 319 ppm) and DVmn (dual ventilation-mechanical + natural; 677 ± 219 ppm). Using LPG and electric appliances during cooking exhibited 32.2% less CO2 than kerosene. Larger kitchens (46–120 m3) evinced 28% and 20% less CO2 than medium (16–45 m3) and small (4–15 m3) ones, respectively. In-kitchen CO2 with >2 occupants during cooking was 7% higher than that with one occupant. 87% of total kitchens exceeded the ASHRAE standard (RH >40%, temperature >23 °C) for thermal comfort. Considering the ventilation type, both the ACH (air change rate per hour) and ventilation rate followed the order: NVdw > NVd > DVmn, while the trend for weekly average CO2 concentration was NVd > DVmn > NVdw. Larger kitchens presented 22% and 28% less ACH, and 82% and 190% higher ventilation rate than medium- and small-volume ones, respectively. Forty-three percent kitchens had ACH |
doi_str_mv | 10.1016/j.jobe.2022.105254 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jobe_2022_105254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352710222012608</els_id><sourcerecordid>S2352710222012608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7DyBzTBz6SR2KCKl1SpG1hbjjMhTt24sk0Lf0-ismDFZmbuaO7V6CB0S0lOCS3u-rz3NeSMMDYuJJPiAs0YlywrKWGXf-ZrtIixJ4SwSvJVIWbIr7cMw9fBx88AS3yEIVmnk_XDEqcOwl47bPy-9SFhPTS4A-1Sh4ONu4jtgJ0_ZXYYLwB3U9nZZDoYIvYtTidwR8AfztdTik0W4g26arWLsPjtc_T-9Pi2fsk22-fX9cMmM1yIlBXc1FVVEyCN5iVryYrLSkjGdSugHFUpqoZRYYDLVVnWLZUNaSQRQKgoasbniJ1zTfAxBmjVIdi9Dt-KEjVRU72aqKmJmjpTG033ZxOMnx0tBBWNhcFAYwOYpBpv_7P_AMp6dc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities</title><source>Elsevier</source><creator>Kumar, Prashant ; Hama, Sarkawt ; Abbass, Rana Alaa ; Nogueira, Thiago ; Brand, Veronika S. ; Wu, Huai-Wen ; Abulude, Francis Olawale ; Adelodun, Adedeji A. ; de Fatima Andrade, Maria ; Asfaw, Araya ; Aziz, Kosar Hama ; Cao, Shi-Jie ; El-Gendy, Ahmed ; Indu, Gopika ; Kehbila, Anderson Gwanyebit ; Mustafa, Fryad ; Muula, Adamson S. ; Nahian, Samiha ; Nardocci, Adelaide Cassia ; Nelson, William ; Ngowi, Aiwerasia V. ; Olaya, Yris ; Omer, Khalid ; Osano, Philip ; Salam, Abdus ; Shiva Nagendra, S.M.</creator><creatorcontrib>Kumar, Prashant ; Hama, Sarkawt ; Abbass, Rana Alaa ; Nogueira, Thiago ; Brand, Veronika S. ; Wu, Huai-Wen ; Abulude, Francis Olawale ; Adelodun, Adedeji A. ; de Fatima Andrade, Maria ; Asfaw, Araya ; Aziz, Kosar Hama ; Cao, Shi-Jie ; El-Gendy, Ahmed ; Indu, Gopika ; Kehbila, Anderson Gwanyebit ; Mustafa, Fryad ; Muula, Adamson S. ; Nahian, Samiha ; Nardocci, Adelaide Cassia ; Nelson, William ; Ngowi, Aiwerasia V. ; Olaya, Yris ; Omer, Khalid ; Osano, Philip ; Salam, Abdus ; Shiva Nagendra, S.M.</creatorcontrib><description>In-kitchen air pollution is a leading environmental issue, attributable to extensive cooking, poor ventilation and the use of polluting fuels. We carried out a week-long monitoring of CO2, temperature and relative humidity (RH) in five low-income residential kitchens of 12 global cities (Dhaka, Chennai, Nanjing, Medellín, São Paulo, Cairo, Sulaymaniyah, Addis Ababa, Nairobi, Blantyre, Akure and Dar-es-Salaam). During cooking, the average in-kitchen CO2 concentrations were 22.2% higher than the daily indoor average. Also, the highest CO2 was observed for NVd (natural ventilation-door only; 711 ± 302 ppm), followed by NVdw (natural ventilation-door + window; 690 ± 319 ppm) and DVmn (dual ventilation-mechanical + natural; 677 ± 219 ppm). Using LPG and electric appliances during cooking exhibited 32.2% less CO2 than kerosene. Larger kitchens (46–120 m3) evinced 28% and 20% less CO2 than medium (16–45 m3) and small (4–15 m3) ones, respectively. In-kitchen CO2 with >2 occupants during cooking was 7% higher than that with one occupant. 87% of total kitchens exceeded the ASHRAE standard (RH >40%, temperature >23 °C) for thermal comfort. Considering the ventilation type, both the ACH (air change rate per hour) and ventilation rate followed the order: NVdw > NVd > DVmn, while the trend for weekly average CO2 concentration was NVd > DVmn > NVdw. Larger kitchens presented 22% and 28% less ACH, and 82% and 190% higher ventilation rate than medium- and small-volume ones, respectively. Forty-three percent kitchens had ACH <3 h−1 and ventilation rate <4 L/s/person, hence violated the conditions for ideal ventilation. Moreover, 10% of the Hazard Ratio values for 25% kitchens exceeded the CO2 reference value (1000 ppm). Consequently, our findings prompted several recommendations towards improving in-kitchen ventilation and environmental conditions of low-income homes.
[Display omitted]
•In-kitchen CO2 exposure in 60 low-income homes across twelve major cities was measured.•Larger volume kitchens exhibited 28% less CO2 concentrations than the medium-sized ones.•Dual (mechanical + natural) ventilation resulted in improved thermal comfort during cooking.•Large-volume (>45 m3) kitchens using natural gas/natural ventilation met daily proper ventilation.•Hazard ratio was above the standard limit in 25% of the investigated kitchens.</description><identifier>ISSN: 2352-7102</identifier><identifier>EISSN: 2352-7102</identifier><identifier>DOI: 10.1016/j.jobe.2022.105254</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>CArE-homes project ; CO2 and ventilation ; Low-income homes ; Sustainable development goals ; Sustainable urban design ; Thermal comfort</subject><ispartof>Journal of Building Engineering, 2022-12, Vol.61, p.105254, Article 105254</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23</citedby><cites>FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23</cites><orcidid>0000-0001-9136-0949 ; 0000-0001-8796-781X ; 0000-0001-5143-0658 ; 0000-0001-7042-7534 ; 0000-0002-2462-4411 ; 0000-0002-0372-3373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Hama, Sarkawt</creatorcontrib><creatorcontrib>Abbass, Rana Alaa</creatorcontrib><creatorcontrib>Nogueira, Thiago</creatorcontrib><creatorcontrib>Brand, Veronika S.</creatorcontrib><creatorcontrib>Wu, Huai-Wen</creatorcontrib><creatorcontrib>Abulude, Francis Olawale</creatorcontrib><creatorcontrib>Adelodun, Adedeji A.</creatorcontrib><creatorcontrib>de Fatima Andrade, Maria</creatorcontrib><creatorcontrib>Asfaw, Araya</creatorcontrib><creatorcontrib>Aziz, Kosar Hama</creatorcontrib><creatorcontrib>Cao, Shi-Jie</creatorcontrib><creatorcontrib>El-Gendy, Ahmed</creatorcontrib><creatorcontrib>Indu, Gopika</creatorcontrib><creatorcontrib>Kehbila, Anderson Gwanyebit</creatorcontrib><creatorcontrib>Mustafa, Fryad</creatorcontrib><creatorcontrib>Muula, Adamson S.</creatorcontrib><creatorcontrib>Nahian, Samiha</creatorcontrib><creatorcontrib>Nardocci, Adelaide Cassia</creatorcontrib><creatorcontrib>Nelson, William</creatorcontrib><creatorcontrib>Ngowi, Aiwerasia V.</creatorcontrib><creatorcontrib>Olaya, Yris</creatorcontrib><creatorcontrib>Omer, Khalid</creatorcontrib><creatorcontrib>Osano, Philip</creatorcontrib><creatorcontrib>Salam, Abdus</creatorcontrib><creatorcontrib>Shiva Nagendra, S.M.</creatorcontrib><title>CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities</title><title>Journal of Building Engineering</title><description>In-kitchen air pollution is a leading environmental issue, attributable to extensive cooking, poor ventilation and the use of polluting fuels. We carried out a week-long monitoring of CO2, temperature and relative humidity (RH) in five low-income residential kitchens of 12 global cities (Dhaka, Chennai, Nanjing, Medellín, São Paulo, Cairo, Sulaymaniyah, Addis Ababa, Nairobi, Blantyre, Akure and Dar-es-Salaam). During cooking, the average in-kitchen CO2 concentrations were 22.2% higher than the daily indoor average. Also, the highest CO2 was observed for NVd (natural ventilation-door only; 711 ± 302 ppm), followed by NVdw (natural ventilation-door + window; 690 ± 319 ppm) and DVmn (dual ventilation-mechanical + natural; 677 ± 219 ppm). Using LPG and electric appliances during cooking exhibited 32.2% less CO2 than kerosene. Larger kitchens (46–120 m3) evinced 28% and 20% less CO2 than medium (16–45 m3) and small (4–15 m3) ones, respectively. In-kitchen CO2 with >2 occupants during cooking was 7% higher than that with one occupant. 87% of total kitchens exceeded the ASHRAE standard (RH >40%, temperature >23 °C) for thermal comfort. Considering the ventilation type, both the ACH (air change rate per hour) and ventilation rate followed the order: NVdw > NVd > DVmn, while the trend for weekly average CO2 concentration was NVd > DVmn > NVdw. Larger kitchens presented 22% and 28% less ACH, and 82% and 190% higher ventilation rate than medium- and small-volume ones, respectively. Forty-three percent kitchens had ACH <3 h−1 and ventilation rate <4 L/s/person, hence violated the conditions for ideal ventilation. Moreover, 10% of the Hazard Ratio values for 25% kitchens exceeded the CO2 reference value (1000 ppm). Consequently, our findings prompted several recommendations towards improving in-kitchen ventilation and environmental conditions of low-income homes.
[Display omitted]
•In-kitchen CO2 exposure in 60 low-income homes across twelve major cities was measured.•Larger volume kitchens exhibited 28% less CO2 concentrations than the medium-sized ones.•Dual (mechanical + natural) ventilation resulted in improved thermal comfort during cooking.•Large-volume (>45 m3) kitchens using natural gas/natural ventilation met daily proper ventilation.•Hazard ratio was above the standard limit in 25% of the investigated kitchens.</description><subject>CArE-homes project</subject><subject>CO2 and ventilation</subject><subject>Low-income homes</subject><subject>Sustainable development goals</subject><subject>Sustainable urban design</subject><subject>Thermal comfort</subject><issn>2352-7102</issn><issn>2352-7102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7DyBzTBz6SR2KCKl1SpG1hbjjMhTt24sk0Lf0-ismDFZmbuaO7V6CB0S0lOCS3u-rz3NeSMMDYuJJPiAs0YlywrKWGXf-ZrtIixJ4SwSvJVIWbIr7cMw9fBx88AS3yEIVmnk_XDEqcOwl47bPy-9SFhPTS4A-1Sh4ONu4jtgJ0_ZXYYLwB3U9nZZDoYIvYtTidwR8AfztdTik0W4g26arWLsPjtc_T-9Pi2fsk22-fX9cMmM1yIlBXc1FVVEyCN5iVryYrLSkjGdSugHFUpqoZRYYDLVVnWLZUNaSQRQKgoasbniJ1zTfAxBmjVIdi9Dt-KEjVRU72aqKmJmjpTG033ZxOMnx0tBBWNhcFAYwOYpBpv_7P_AMp6dc4</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Kumar, Prashant</creator><creator>Hama, Sarkawt</creator><creator>Abbass, Rana Alaa</creator><creator>Nogueira, Thiago</creator><creator>Brand, Veronika S.</creator><creator>Wu, Huai-Wen</creator><creator>Abulude, Francis Olawale</creator><creator>Adelodun, Adedeji A.</creator><creator>de Fatima Andrade, Maria</creator><creator>Asfaw, Araya</creator><creator>Aziz, Kosar Hama</creator><creator>Cao, Shi-Jie</creator><creator>El-Gendy, Ahmed</creator><creator>Indu, Gopika</creator><creator>Kehbila, Anderson Gwanyebit</creator><creator>Mustafa, Fryad</creator><creator>Muula, Adamson S.</creator><creator>Nahian, Samiha</creator><creator>Nardocci, Adelaide Cassia</creator><creator>Nelson, William</creator><creator>Ngowi, Aiwerasia V.</creator><creator>Olaya, Yris</creator><creator>Omer, Khalid</creator><creator>Osano, Philip</creator><creator>Salam, Abdus</creator><creator>Shiva Nagendra, S.M.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9136-0949</orcidid><orcidid>https://orcid.org/0000-0001-8796-781X</orcidid><orcidid>https://orcid.org/0000-0001-5143-0658</orcidid><orcidid>https://orcid.org/0000-0001-7042-7534</orcidid><orcidid>https://orcid.org/0000-0002-2462-4411</orcidid><orcidid>https://orcid.org/0000-0002-0372-3373</orcidid></search><sort><creationdate>20221201</creationdate><title>CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities</title><author>Kumar, Prashant ; Hama, Sarkawt ; Abbass, Rana Alaa ; Nogueira, Thiago ; Brand, Veronika S. ; Wu, Huai-Wen ; Abulude, Francis Olawale ; Adelodun, Adedeji A. ; de Fatima Andrade, Maria ; Asfaw, Araya ; Aziz, Kosar Hama ; Cao, Shi-Jie ; El-Gendy, Ahmed ; Indu, Gopika ; Kehbila, Anderson Gwanyebit ; Mustafa, Fryad ; Muula, Adamson S. ; Nahian, Samiha ; Nardocci, Adelaide Cassia ; Nelson, William ; Ngowi, Aiwerasia V. ; Olaya, Yris ; Omer, Khalid ; Osano, Philip ; Salam, Abdus ; Shiva Nagendra, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CArE-homes project</topic><topic>CO2 and ventilation</topic><topic>Low-income homes</topic><topic>Sustainable development goals</topic><topic>Sustainable urban design</topic><topic>Thermal comfort</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Hama, Sarkawt</creatorcontrib><creatorcontrib>Abbass, Rana Alaa</creatorcontrib><creatorcontrib>Nogueira, Thiago</creatorcontrib><creatorcontrib>Brand, Veronika S.</creatorcontrib><creatorcontrib>Wu, Huai-Wen</creatorcontrib><creatorcontrib>Abulude, Francis Olawale</creatorcontrib><creatorcontrib>Adelodun, Adedeji A.</creatorcontrib><creatorcontrib>de Fatima Andrade, Maria</creatorcontrib><creatorcontrib>Asfaw, Araya</creatorcontrib><creatorcontrib>Aziz, Kosar Hama</creatorcontrib><creatorcontrib>Cao, Shi-Jie</creatorcontrib><creatorcontrib>El-Gendy, Ahmed</creatorcontrib><creatorcontrib>Indu, Gopika</creatorcontrib><creatorcontrib>Kehbila, Anderson Gwanyebit</creatorcontrib><creatorcontrib>Mustafa, Fryad</creatorcontrib><creatorcontrib>Muula, Adamson S.</creatorcontrib><creatorcontrib>Nahian, Samiha</creatorcontrib><creatorcontrib>Nardocci, Adelaide Cassia</creatorcontrib><creatorcontrib>Nelson, William</creatorcontrib><creatorcontrib>Ngowi, Aiwerasia V.</creatorcontrib><creatorcontrib>Olaya, Yris</creatorcontrib><creatorcontrib>Omer, Khalid</creatorcontrib><creatorcontrib>Osano, Philip</creatorcontrib><creatorcontrib>Salam, Abdus</creatorcontrib><creatorcontrib>Shiva Nagendra, S.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of Building Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Prashant</au><au>Hama, Sarkawt</au><au>Abbass, Rana Alaa</au><au>Nogueira, Thiago</au><au>Brand, Veronika S.</au><au>Wu, Huai-Wen</au><au>Abulude, Francis Olawale</au><au>Adelodun, Adedeji A.</au><au>de Fatima Andrade, Maria</au><au>Asfaw, Araya</au><au>Aziz, Kosar Hama</au><au>Cao, Shi-Jie</au><au>El-Gendy, Ahmed</au><au>Indu, Gopika</au><au>Kehbila, Anderson Gwanyebit</au><au>Mustafa, Fryad</au><au>Muula, Adamson S.</au><au>Nahian, Samiha</au><au>Nardocci, Adelaide Cassia</au><au>Nelson, William</au><au>Ngowi, Aiwerasia V.</au><au>Olaya, Yris</au><au>Omer, Khalid</au><au>Osano, Philip</au><au>Salam, Abdus</au><au>Shiva Nagendra, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities</atitle><jtitle>Journal of Building Engineering</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>61</volume><spage>105254</spage><pages>105254-</pages><artnum>105254</artnum><issn>2352-7102</issn><eissn>2352-7102</eissn><abstract>In-kitchen air pollution is a leading environmental issue, attributable to extensive cooking, poor ventilation and the use of polluting fuels. We carried out a week-long monitoring of CO2, temperature and relative humidity (RH) in five low-income residential kitchens of 12 global cities (Dhaka, Chennai, Nanjing, Medellín, São Paulo, Cairo, Sulaymaniyah, Addis Ababa, Nairobi, Blantyre, Akure and Dar-es-Salaam). During cooking, the average in-kitchen CO2 concentrations were 22.2% higher than the daily indoor average. Also, the highest CO2 was observed for NVd (natural ventilation-door only; 711 ± 302 ppm), followed by NVdw (natural ventilation-door + window; 690 ± 319 ppm) and DVmn (dual ventilation-mechanical + natural; 677 ± 219 ppm). Using LPG and electric appliances during cooking exhibited 32.2% less CO2 than kerosene. Larger kitchens (46–120 m3) evinced 28% and 20% less CO2 than medium (16–45 m3) and small (4–15 m3) ones, respectively. In-kitchen CO2 with >2 occupants during cooking was 7% higher than that with one occupant. 87% of total kitchens exceeded the ASHRAE standard (RH >40%, temperature >23 °C) for thermal comfort. Considering the ventilation type, both the ACH (air change rate per hour) and ventilation rate followed the order: NVdw > NVd > DVmn, while the trend for weekly average CO2 concentration was NVd > DVmn > NVdw. Larger kitchens presented 22% and 28% less ACH, and 82% and 190% higher ventilation rate than medium- and small-volume ones, respectively. Forty-three percent kitchens had ACH <3 h−1 and ventilation rate <4 L/s/person, hence violated the conditions for ideal ventilation. Moreover, 10% of the Hazard Ratio values for 25% kitchens exceeded the CO2 reference value (1000 ppm). Consequently, our findings prompted several recommendations towards improving in-kitchen ventilation and environmental conditions of low-income homes.
[Display omitted]
•In-kitchen CO2 exposure in 60 low-income homes across twelve major cities was measured.•Larger volume kitchens exhibited 28% less CO2 concentrations than the medium-sized ones.•Dual (mechanical + natural) ventilation resulted in improved thermal comfort during cooking.•Large-volume (>45 m3) kitchens using natural gas/natural ventilation met daily proper ventilation.•Hazard ratio was above the standard limit in 25% of the investigated kitchens.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jobe.2022.105254</doi><orcidid>https://orcid.org/0000-0001-9136-0949</orcidid><orcidid>https://orcid.org/0000-0001-8796-781X</orcidid><orcidid>https://orcid.org/0000-0001-5143-0658</orcidid><orcidid>https://orcid.org/0000-0001-7042-7534</orcidid><orcidid>https://orcid.org/0000-0002-2462-4411</orcidid><orcidid>https://orcid.org/0000-0002-0372-3373</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-7102 |
ispartof | Journal of Building Engineering, 2022-12, Vol.61, p.105254, Article 105254 |
issn | 2352-7102 2352-7102 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jobe_2022_105254 |
source | Elsevier |
subjects | CArE-homes project CO2 and ventilation Low-income homes Sustainable development goals Sustainable urban design Thermal comfort |
title | CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20exposure,%20ventilation,%20thermal%20comfort%20and%20health%20risks%20in%20low-income%20home%20kitchens%20of%20twelve%20global%20cities&rft.jtitle=Journal%20of%20Building%20Engineering&rft.au=Kumar,%20Prashant&rft.date=2022-12-01&rft.volume=61&rft.spage=105254&rft.pages=105254-&rft.artnum=105254&rft.issn=2352-7102&rft.eissn=2352-7102&rft_id=info:doi/10.1016/j.jobe.2022.105254&rft_dat=%3Celsevier_cross%3ES2352710222012608%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-63cb99b0e0da372f083594523af4e7083749d214ce35877bf15d0d504e0146b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |