Loading…
Efficient hypergeometric wavelet approach for solving lane-emden equations
Nonlinear initial / boundary value problems present challenges in solving due to the divergence of coefficients near singular points. This study introduces a novel hypergeometric wavelet-based approach designed to effectively address these equations. The specialized wavelet method efficiently manage...
Saved in:
Published in: | Journal of computational science 2024-10, Vol.82, p.102392, Article 102392 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c181t-e06ef840030be65dbac7dbb57fd18e8ffd8daefa77d43c9ac2bb3228b99eeff13 |
container_end_page | |
container_issue | |
container_start_page | 102392 |
container_title | Journal of computational science |
container_volume | 82 |
creator | Gireesha, B.J. Gowtham, K.J. |
description | Nonlinear initial / boundary value problems present challenges in solving due to the divergence of coefficients near singular points. This study introduces a novel hypergeometric wavelet-based approach designed to effectively address these equations. The specialized wavelet method efficiently manages singularities, resulting in improved accuracy. To evaluate the precision and effectiveness of this approach, Lane-Emden type problems are solved using the proposed methodology and compared against established benchmarks. Comparative analyses with alternative wavelet methods are conducted, featuring absolute error tables and graphical representations. The findings highlight the exceptional accuracy and efficiency of the proposed method relative to existing approaches. An advantage of this method is its requirement of fewer basis functions, leading to reduced computational time and complexity.
•Novel hypergeometric wavelets & collocation for Lane-Emden problems.•Comparative analyses show superior accuracy & efficiency.•Fewer basis functions reduce computational time & complexity.•Comparative analysis shows superior accuracy. |
doi_str_mv | 10.1016/j.jocs.2024.102392 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jocs_2024_102392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1877750324001856</els_id><sourcerecordid>S1877750324001856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-e06ef840030be65dbac7dbb57fd18e8ffd8daefa77d43c9ac2bb3228b99eeff13</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRbVooSHND3SlH3CqR2LJ0E0J6YtAN-1a6DFKZGzLldyU_H1t3HVnMzBwLncOQneUrCmh5X29rqPNa0bYZjwwXrErtKBSiEJsCb9Bq5xrMg6XsqJ8gd723gcboBvw6dJDOkJsYUjB4h99hgYGrPs-RW1P2MeEc2zOoTviRndQQOugw_D1rYcQu3yLrr1uMqz-9hJ9Pu0_di_F4f35dfd4KCyVdCiAlODlZqxADJRbZ7QVzpit8I5KkN476TR4LYTbcFtpy4zhjElTVQDeU75EbM61KeacwKs-hVani6JETRJUrSYJapKgZgkj9DBDMDY7B0gqT19bcCGBHZSL4T_8F1wdang</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient hypergeometric wavelet approach for solving lane-emden equations</title><source>ScienceDirect Journals</source><creator>Gireesha, B.J. ; Gowtham, K.J.</creator><creatorcontrib>Gireesha, B.J. ; Gowtham, K.J.</creatorcontrib><description>Nonlinear initial / boundary value problems present challenges in solving due to the divergence of coefficients near singular points. This study introduces a novel hypergeometric wavelet-based approach designed to effectively address these equations. The specialized wavelet method efficiently manages singularities, resulting in improved accuracy. To evaluate the precision and effectiveness of this approach, Lane-Emden type problems are solved using the proposed methodology and compared against established benchmarks. Comparative analyses with alternative wavelet methods are conducted, featuring absolute error tables and graphical representations. The findings highlight the exceptional accuracy and efficiency of the proposed method relative to existing approaches. An advantage of this method is its requirement of fewer basis functions, leading to reduced computational time and complexity.
•Novel hypergeometric wavelets & collocation for Lane-Emden problems.•Comparative analyses show superior accuracy & efficiency.•Fewer basis functions reduce computational time & complexity.•Comparative analysis shows superior accuracy.</description><identifier>ISSN: 1877-7503</identifier><identifier>DOI: 10.1016/j.jocs.2024.102392</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Collocation method ; Hypergeometric wavelet ; Lane-Emden Equations ; Operational integration matrix</subject><ispartof>Journal of computational science, 2024-10, Vol.82, p.102392, Article 102392</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-e06ef840030be65dbac7dbb57fd18e8ffd8daefa77d43c9ac2bb3228b99eeff13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gireesha, B.J.</creatorcontrib><creatorcontrib>Gowtham, K.J.</creatorcontrib><title>Efficient hypergeometric wavelet approach for solving lane-emden equations</title><title>Journal of computational science</title><description>Nonlinear initial / boundary value problems present challenges in solving due to the divergence of coefficients near singular points. This study introduces a novel hypergeometric wavelet-based approach designed to effectively address these equations. The specialized wavelet method efficiently manages singularities, resulting in improved accuracy. To evaluate the precision and effectiveness of this approach, Lane-Emden type problems are solved using the proposed methodology and compared against established benchmarks. Comparative analyses with alternative wavelet methods are conducted, featuring absolute error tables and graphical representations. The findings highlight the exceptional accuracy and efficiency of the proposed method relative to existing approaches. An advantage of this method is its requirement of fewer basis functions, leading to reduced computational time and complexity.
•Novel hypergeometric wavelets & collocation for Lane-Emden problems.•Comparative analyses show superior accuracy & efficiency.•Fewer basis functions reduce computational time & complexity.•Comparative analysis shows superior accuracy.</description><subject>Collocation method</subject><subject>Hypergeometric wavelet</subject><subject>Lane-Emden Equations</subject><subject>Operational integration matrix</subject><issn>1877-7503</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRbVooSHND3SlH3CqR2LJ0E0J6YtAN-1a6DFKZGzLldyU_H1t3HVnMzBwLncOQneUrCmh5X29rqPNa0bYZjwwXrErtKBSiEJsCb9Bq5xrMg6XsqJ8gd723gcboBvw6dJDOkJsYUjB4h99hgYGrPs-RW1P2MeEc2zOoTviRndQQOugw_D1rYcQu3yLrr1uMqz-9hJ9Pu0_di_F4f35dfd4KCyVdCiAlODlZqxADJRbZ7QVzpit8I5KkN476TR4LYTbcFtpy4zhjElTVQDeU75EbM61KeacwKs-hVani6JETRJUrSYJapKgZgkj9DBDMDY7B0gqT19bcCGBHZSL4T_8F1wdang</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Gireesha, B.J.</creator><creator>Gowtham, K.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202410</creationdate><title>Efficient hypergeometric wavelet approach for solving lane-emden equations</title><author>Gireesha, B.J. ; Gowtham, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-e06ef840030be65dbac7dbb57fd18e8ffd8daefa77d43c9ac2bb3228b99eeff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collocation method</topic><topic>Hypergeometric wavelet</topic><topic>Lane-Emden Equations</topic><topic>Operational integration matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gireesha, B.J.</creatorcontrib><creatorcontrib>Gowtham, K.J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gireesha, B.J.</au><au>Gowtham, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient hypergeometric wavelet approach for solving lane-emden equations</atitle><jtitle>Journal of computational science</jtitle><date>2024-10</date><risdate>2024</risdate><volume>82</volume><spage>102392</spage><pages>102392-</pages><artnum>102392</artnum><issn>1877-7503</issn><abstract>Nonlinear initial / boundary value problems present challenges in solving due to the divergence of coefficients near singular points. This study introduces a novel hypergeometric wavelet-based approach designed to effectively address these equations. The specialized wavelet method efficiently manages singularities, resulting in improved accuracy. To evaluate the precision and effectiveness of this approach, Lane-Emden type problems are solved using the proposed methodology and compared against established benchmarks. Comparative analyses with alternative wavelet methods are conducted, featuring absolute error tables and graphical representations. The findings highlight the exceptional accuracy and efficiency of the proposed method relative to existing approaches. An advantage of this method is its requirement of fewer basis functions, leading to reduced computational time and complexity.
•Novel hypergeometric wavelets & collocation for Lane-Emden problems.•Comparative analyses show superior accuracy & efficiency.•Fewer basis functions reduce computational time & complexity.•Comparative analysis shows superior accuracy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jocs.2024.102392</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1877-7503 |
ispartof | Journal of computational science, 2024-10, Vol.82, p.102392, Article 102392 |
issn | 1877-7503 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jocs_2024_102392 |
source | ScienceDirect Journals |
subjects | Collocation method Hypergeometric wavelet Lane-Emden Equations Operational integration matrix |
title | Efficient hypergeometric wavelet approach for solving lane-emden equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20hypergeometric%20wavelet%20approach%20for%20solving%20lane-emden%20equations&rft.jtitle=Journal%20of%20computational%20science&rft.au=Gireesha,%20B.J.&rft.date=2024-10&rft.volume=82&rft.spage=102392&rft.pages=102392-&rft.artnum=102392&rft.issn=1877-7503&rft_id=info:doi/10.1016/j.jocs.2024.102392&rft_dat=%3Celsevier_cross%3ES1877750324001856%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-e06ef840030be65dbac7dbb57fd18e8ffd8daefa77d43c9ac2bb3228b99eeff13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |