Loading…

Efficient hypergeometric wavelet approach for solving lane-emden equations

Nonlinear initial / boundary value problems present challenges in solving due to the divergence of coefficients near singular points. This study introduces a novel hypergeometric wavelet-based approach designed to effectively address these equations. The specialized wavelet method efficiently manage...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational science 2024-10, Vol.82, p.102392, Article 102392
Main Authors: Gireesha, B.J., Gowtham, K.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c181t-e06ef840030be65dbac7dbb57fd18e8ffd8daefa77d43c9ac2bb3228b99eeff13
container_end_page
container_issue
container_start_page 102392
container_title Journal of computational science
container_volume 82
creator Gireesha, B.J.
Gowtham, K.J.
description Nonlinear initial / boundary value problems present challenges in solving due to the divergence of coefficients near singular points. This study introduces a novel hypergeometric wavelet-based approach designed to effectively address these equations. The specialized wavelet method efficiently manages singularities, resulting in improved accuracy. To evaluate the precision and effectiveness of this approach, Lane-Emden type problems are solved using the proposed methodology and compared against established benchmarks. Comparative analyses with alternative wavelet methods are conducted, featuring absolute error tables and graphical representations. The findings highlight the exceptional accuracy and efficiency of the proposed method relative to existing approaches. An advantage of this method is its requirement of fewer basis functions, leading to reduced computational time and complexity. •Novel hypergeometric wavelets & collocation for Lane-Emden problems.•Comparative analyses show superior accuracy & efficiency.•Fewer basis functions reduce computational time & complexity.•Comparative analysis shows superior accuracy.
doi_str_mv 10.1016/j.jocs.2024.102392
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jocs_2024_102392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1877750324001856</els_id><sourcerecordid>S1877750324001856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-e06ef840030be65dbac7dbb57fd18e8ffd8daefa77d43c9ac2bb3228b99eeff13</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRbVooSHND3SlH3CqR2LJ0E0J6YtAN-1a6DFKZGzLldyU_H1t3HVnMzBwLncOQneUrCmh5X29rqPNa0bYZjwwXrErtKBSiEJsCb9Bq5xrMg6XsqJ8gd723gcboBvw6dJDOkJsYUjB4h99hgYGrPs-RW1P2MeEc2zOoTviRndQQOugw_D1rYcQu3yLrr1uMqz-9hJ9Pu0_di_F4f35dfd4KCyVdCiAlODlZqxADJRbZ7QVzpit8I5KkN476TR4LYTbcFtpy4zhjElTVQDeU75EbM61KeacwKs-hVani6JETRJUrSYJapKgZgkj9DBDMDY7B0gqT19bcCGBHZSL4T_8F1wdang</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient hypergeometric wavelet approach for solving lane-emden equations</title><source>ScienceDirect Journals</source><creator>Gireesha, B.J. ; Gowtham, K.J.</creator><creatorcontrib>Gireesha, B.J. ; Gowtham, K.J.</creatorcontrib><description>Nonlinear initial / boundary value problems present challenges in solving due to the divergence of coefficients near singular points. This study introduces a novel hypergeometric wavelet-based approach designed to effectively address these equations. The specialized wavelet method efficiently manages singularities, resulting in improved accuracy. To evaluate the precision and effectiveness of this approach, Lane-Emden type problems are solved using the proposed methodology and compared against established benchmarks. Comparative analyses with alternative wavelet methods are conducted, featuring absolute error tables and graphical representations. The findings highlight the exceptional accuracy and efficiency of the proposed method relative to existing approaches. An advantage of this method is its requirement of fewer basis functions, leading to reduced computational time and complexity. •Novel hypergeometric wavelets &amp; collocation for Lane-Emden problems.•Comparative analyses show superior accuracy &amp; efficiency.•Fewer basis functions reduce computational time &amp; complexity.•Comparative analysis shows superior accuracy.</description><identifier>ISSN: 1877-7503</identifier><identifier>DOI: 10.1016/j.jocs.2024.102392</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Collocation method ; Hypergeometric wavelet ; Lane-Emden Equations ; Operational integration matrix</subject><ispartof>Journal of computational science, 2024-10, Vol.82, p.102392, Article 102392</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-e06ef840030be65dbac7dbb57fd18e8ffd8daefa77d43c9ac2bb3228b99eeff13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gireesha, B.J.</creatorcontrib><creatorcontrib>Gowtham, K.J.</creatorcontrib><title>Efficient hypergeometric wavelet approach for solving lane-emden equations</title><title>Journal of computational science</title><description>Nonlinear initial / boundary value problems present challenges in solving due to the divergence of coefficients near singular points. This study introduces a novel hypergeometric wavelet-based approach designed to effectively address these equations. The specialized wavelet method efficiently manages singularities, resulting in improved accuracy. To evaluate the precision and effectiveness of this approach, Lane-Emden type problems are solved using the proposed methodology and compared against established benchmarks. Comparative analyses with alternative wavelet methods are conducted, featuring absolute error tables and graphical representations. The findings highlight the exceptional accuracy and efficiency of the proposed method relative to existing approaches. An advantage of this method is its requirement of fewer basis functions, leading to reduced computational time and complexity. •Novel hypergeometric wavelets &amp; collocation for Lane-Emden problems.•Comparative analyses show superior accuracy &amp; efficiency.•Fewer basis functions reduce computational time &amp; complexity.•Comparative analysis shows superior accuracy.</description><subject>Collocation method</subject><subject>Hypergeometric wavelet</subject><subject>Lane-Emden Equations</subject><subject>Operational integration matrix</subject><issn>1877-7503</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRbVooSHND3SlH3CqR2LJ0E0J6YtAN-1a6DFKZGzLldyU_H1t3HVnMzBwLncOQneUrCmh5X29rqPNa0bYZjwwXrErtKBSiEJsCb9Bq5xrMg6XsqJ8gd723gcboBvw6dJDOkJsYUjB4h99hgYGrPs-RW1P2MeEc2zOoTviRndQQOugw_D1rYcQu3yLrr1uMqz-9hJ9Pu0_di_F4f35dfd4KCyVdCiAlODlZqxADJRbZ7QVzpit8I5KkN476TR4LYTbcFtpy4zhjElTVQDeU75EbM61KeacwKs-hVani6JETRJUrSYJapKgZgkj9DBDMDY7B0gqT19bcCGBHZSL4T_8F1wdang</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Gireesha, B.J.</creator><creator>Gowtham, K.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202410</creationdate><title>Efficient hypergeometric wavelet approach for solving lane-emden equations</title><author>Gireesha, B.J. ; Gowtham, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-e06ef840030be65dbac7dbb57fd18e8ffd8daefa77d43c9ac2bb3228b99eeff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collocation method</topic><topic>Hypergeometric wavelet</topic><topic>Lane-Emden Equations</topic><topic>Operational integration matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gireesha, B.J.</creatorcontrib><creatorcontrib>Gowtham, K.J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gireesha, B.J.</au><au>Gowtham, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient hypergeometric wavelet approach for solving lane-emden equations</atitle><jtitle>Journal of computational science</jtitle><date>2024-10</date><risdate>2024</risdate><volume>82</volume><spage>102392</spage><pages>102392-</pages><artnum>102392</artnum><issn>1877-7503</issn><abstract>Nonlinear initial / boundary value problems present challenges in solving due to the divergence of coefficients near singular points. This study introduces a novel hypergeometric wavelet-based approach designed to effectively address these equations. The specialized wavelet method efficiently manages singularities, resulting in improved accuracy. To evaluate the precision and effectiveness of this approach, Lane-Emden type problems are solved using the proposed methodology and compared against established benchmarks. Comparative analyses with alternative wavelet methods are conducted, featuring absolute error tables and graphical representations. The findings highlight the exceptional accuracy and efficiency of the proposed method relative to existing approaches. An advantage of this method is its requirement of fewer basis functions, leading to reduced computational time and complexity. •Novel hypergeometric wavelets &amp; collocation for Lane-Emden problems.•Comparative analyses show superior accuracy &amp; efficiency.•Fewer basis functions reduce computational time &amp; complexity.•Comparative analysis shows superior accuracy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jocs.2024.102392</doi></addata></record>
fulltext fulltext
identifier ISSN: 1877-7503
ispartof Journal of computational science, 2024-10, Vol.82, p.102392, Article 102392
issn 1877-7503
language eng
recordid cdi_crossref_primary_10_1016_j_jocs_2024_102392
source ScienceDirect Journals
subjects Collocation method
Hypergeometric wavelet
Lane-Emden Equations
Operational integration matrix
title Efficient hypergeometric wavelet approach for solving lane-emden equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20hypergeometric%20wavelet%20approach%20for%20solving%20lane-emden%20equations&rft.jtitle=Journal%20of%20computational%20science&rft.au=Gireesha,%20B.J.&rft.date=2024-10&rft.volume=82&rft.spage=102392&rft.pages=102392-&rft.artnum=102392&rft.issn=1877-7503&rft_id=info:doi/10.1016/j.jocs.2024.102392&rft_dat=%3Celsevier_cross%3ES1877750324001856%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-e06ef840030be65dbac7dbb57fd18e8ffd8daefa77d43c9ac2bb3228b99eeff13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true