Loading…

Late Paleozoic-Jurassic tectonic evolution of the eastern Deseado Massif in central-southern Patagonia

Previous tectonic studies have indicated that the peri-cratonic lithosphere, located away from continental margins, is sensitive to far-field stresses propagating from active plate margins, which induce variable deformation. In order to gain a better understanding of potential intraplate tectonic ev...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geodynamics 2023-12, Vol.158, p.101997, Article 101997
Main Authors: Navarrete, C., Bastías-Silva, J., Gianni, G., Jalfin, G., Guerra, G., Hurley, M., Chew, D., Turra, J.M., Ocampo, M., Lastra, M.B., Herbst, N., Iglesias, M., Perez Frasette, M., Drakou, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous tectonic studies have indicated that the peri-cratonic lithosphere, located away from continental margins, is sensitive to far-field stresses propagating from active plate margins, which induce variable deformation. In order to gain a better understanding of potential intraplate tectonic events associated with the geodynamic evolution of the active margin of southwestern Gondwana, we conducted a tectono-sedimentary study of the Permian-Jurassic volcano-sedimentary record in the Deseado Massif, located in southern Patagonia. Our multidisciplinary analysis includes detailed geological mapping of an area of approximately 150 km2, structural analysis, geoelectric tomography, 2D seismic data, new geochronological dating, petrographic studies, and stratigraphic loggings of the volcano-sedimentary basin record. This comprehensive data set has allowed us to establish the tectonic, sedimentary, and magmatic evolution of the eastern Deseado Massif. Specifically, we have identified major normal faults associated with the syn-extensional deposition of late Permian and Jurassic sedimentary and volcanic rocks, as well as the Late Triassic emplacement of intermediate and felsic intrusive bodies. Additionally, interspersed large-scale shortening events were recognized, which induced positive tectonic inversion events in the region, recording contrasting stress fields during the analyzed lapse. Based on this, six major intraplate tectonomagmatic events were defined: (i) a potential post-Devonian pre-late Permian exhumation of the Neoproterozoic-early Paleozoic igneous-metamorphic basement, which we tentatively link to the Gondwanide orogeny; (ii) intraplate extension in the Late Permian (255 ± 4 Ma) related to the deposition of the Dos Hermanos Member of the La Golondrina Formation; (iii) Late Triassic (231 ± 3 Ma) intrusion of andesitic bodies, tentatively linked to the inland migration of arc magmatism associated with the South Gondwana flat slab; (iv) subsequent Late Triassic positive tectonic inversion of Permian extensional faults caused by a large-scale contractional event linked to the South Gondwana flat slab; (v) the extension-related emplacement and deposition of Early-Middle Jurassic (176 ± 3 Ma; 172 ± 4 Ma) sedimentary (lacustrine and fan deltas-related deposits), pyroclastic rocks (ignimbrites and ash tuffs), and lavas (lava domes and dykes) related to the Chon Aike silicic large igneous province; and (vi) poorly-constrained post-Middle Jurassic posit
ISSN:0264-3707
DOI:10.1016/j.jog.2023.101997