Loading…

Uncited papers in the structure of scientific communication

•The citations of 729,515 articles fit by the generalized extreme-value distribution.•The complexity of references and citations of papers’ quantiles is studied.•The macroscopic model of the citation distribution is proposed. The paper presents an in-depth study of uncited papers. For that, we explo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of informetrics 2023-05, Vol.17 (2), p.101391, Article 101391
Main Authors: Katchanov, Yurij L., Markova, Yulia V., Shmatko, Natalia A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-26269d41e55b8d987dd216db7758c1136e71a5411738e1e79313a968aa4452ba3
cites cdi_FETCH-LOGICAL-c297t-26269d41e55b8d987dd216db7758c1136e71a5411738e1e79313a968aa4452ba3
container_end_page
container_issue 2
container_start_page 101391
container_title Journal of informetrics
container_volume 17
creator Katchanov, Yurij L.
Markova, Yulia V.
Shmatko, Natalia A.
description •The citations of 729,515 articles fit by the generalized extreme-value distribution.•The complexity of references and citations of papers’ quantiles is studied.•The macroscopic model of the citation distribution is proposed. The paper presents an in-depth study of uncited papers. For that, we explore the documents indexed in the INSPIRE database from 1970 to 2015. Uncited articles represent a complex bibliometric environment in which references are generated. The reference lists of uncited papers form a dynamic system partially responsible for the redistribution of scientific impact. Our task is to quantify the detailed structure of citations and references directly in terms of quantiles. We also study the entropy and the statistical complexity measure of references and citations of papers’ quantiles. We introduce a theoretical framework in which citation distribution is considered an asymptotic distribution of the largest values in a sequence of independent identically distributed random variables. We show that this asymptotic distribution is the generalized extreme-value distribution. Furthermore, we empirically demonstrate that the asymptotic behavior of citation distribution is close to (but not quite) the generalized extreme-value distribution.
doi_str_mv 10.1016/j.joi.2023.101391
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_joi_2023_101391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751157723000160</els_id><sourcerecordid>S1751157723000160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-26269d41e55b8d987dd216db7758c1136e71a5411738e1e79313a968aa4452ba3</originalsourceid><addsrcrecordid>eNp1j01LAzEQhoMoWKs_wFv-wNadZPNFT1LUCgUv9hzSZBazuLslSQX_vbvWq6eZgXle3oeQe6hXUIN86FbdGFesZny-uYELsgCtRCW0MpfTrgRUIJS6Jjc5d3UtpASzIOv94GPBQI_uiCnTONDygTSXdPLllJCOLc0-4lBiGz31Y9-fhuhdieNwS65a95nx7m8uyf756X2zrXZvL6-bx13lmVGlYpJJExpAIQ46GK1CYCDDQSmhPQCXqMCJBkBxjYDKcODOSO1c0wh2cHxJ4Jzr05hzwtYeU-xd-rZQ29nednayt7O9PdtPzPrM4FTsK2KyvxYeQ0zoiw3T___0D6gLYYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncited papers in the structure of scientific communication</title><source>ScienceDirect Freedom Collection</source><creator>Katchanov, Yurij L. ; Markova, Yulia V. ; Shmatko, Natalia A.</creator><creatorcontrib>Katchanov, Yurij L. ; Markova, Yulia V. ; Shmatko, Natalia A.</creatorcontrib><description>•The citations of 729,515 articles fit by the generalized extreme-value distribution.•The complexity of references and citations of papers’ quantiles is studied.•The macroscopic model of the citation distribution is proposed. The paper presents an in-depth study of uncited papers. For that, we explore the documents indexed in the INSPIRE database from 1970 to 2015. Uncited articles represent a complex bibliometric environment in which references are generated. The reference lists of uncited papers form a dynamic system partially responsible for the redistribution of scientific impact. Our task is to quantify the detailed structure of citations and references directly in terms of quantiles. We also study the entropy and the statistical complexity measure of references and citations of papers’ quantiles. We introduce a theoretical framework in which citation distribution is considered an asymptotic distribution of the largest values in a sequence of independent identically distributed random variables. We show that this asymptotic distribution is the generalized extreme-value distribution. Furthermore, we empirically demonstrate that the asymptotic behavior of citation distribution is close to (but not quite) the generalized extreme-value distribution.</description><identifier>ISSN: 1751-1577</identifier><identifier>EISSN: 1875-5879</identifier><identifier>DOI: 10.1016/j.joi.2023.101391</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bibliometrics ; Citation analysis ; INSPIRE ; Uncited papers ; Uncitness</subject><ispartof>Journal of informetrics, 2023-05, Vol.17 (2), p.101391, Article 101391</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-26269d41e55b8d987dd216db7758c1136e71a5411738e1e79313a968aa4452ba3</citedby><cites>FETCH-LOGICAL-c297t-26269d41e55b8d987dd216db7758c1136e71a5411738e1e79313a968aa4452ba3</cites><orcidid>0000-0001-6836-5549 ; 0000-0001-8202-8370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Katchanov, Yurij L.</creatorcontrib><creatorcontrib>Markova, Yulia V.</creatorcontrib><creatorcontrib>Shmatko, Natalia A.</creatorcontrib><title>Uncited papers in the structure of scientific communication</title><title>Journal of informetrics</title><description>•The citations of 729,515 articles fit by the generalized extreme-value distribution.•The complexity of references and citations of papers’ quantiles is studied.•The macroscopic model of the citation distribution is proposed. The paper presents an in-depth study of uncited papers. For that, we explore the documents indexed in the INSPIRE database from 1970 to 2015. Uncited articles represent a complex bibliometric environment in which references are generated. The reference lists of uncited papers form a dynamic system partially responsible for the redistribution of scientific impact. Our task is to quantify the detailed structure of citations and references directly in terms of quantiles. We also study the entropy and the statistical complexity measure of references and citations of papers’ quantiles. We introduce a theoretical framework in which citation distribution is considered an asymptotic distribution of the largest values in a sequence of independent identically distributed random variables. We show that this asymptotic distribution is the generalized extreme-value distribution. Furthermore, we empirically demonstrate that the asymptotic behavior of citation distribution is close to (but not quite) the generalized extreme-value distribution.</description><subject>Bibliometrics</subject><subject>Citation analysis</subject><subject>INSPIRE</subject><subject>Uncited papers</subject><subject>Uncitness</subject><issn>1751-1577</issn><issn>1875-5879</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1j01LAzEQhoMoWKs_wFv-wNadZPNFT1LUCgUv9hzSZBazuLslSQX_vbvWq6eZgXle3oeQe6hXUIN86FbdGFesZny-uYELsgCtRCW0MpfTrgRUIJS6Jjc5d3UtpASzIOv94GPBQI_uiCnTONDygTSXdPLllJCOLc0-4lBiGz31Y9-fhuhdieNwS65a95nx7m8uyf756X2zrXZvL6-bx13lmVGlYpJJExpAIQ46GK1CYCDDQSmhPQCXqMCJBkBxjYDKcODOSO1c0wh2cHxJ4Jzr05hzwtYeU-xd-rZQ29nednayt7O9PdtPzPrM4FTsK2KyvxYeQ0zoiw3T___0D6gLYYg</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Katchanov, Yurij L.</creator><creator>Markova, Yulia V.</creator><creator>Shmatko, Natalia A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6836-5549</orcidid><orcidid>https://orcid.org/0000-0001-8202-8370</orcidid></search><sort><creationdate>202305</creationdate><title>Uncited papers in the structure of scientific communication</title><author>Katchanov, Yurij L. ; Markova, Yulia V. ; Shmatko, Natalia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-26269d41e55b8d987dd216db7758c1136e71a5411738e1e79313a968aa4452ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bibliometrics</topic><topic>Citation analysis</topic><topic>INSPIRE</topic><topic>Uncited papers</topic><topic>Uncitness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katchanov, Yurij L.</creatorcontrib><creatorcontrib>Markova, Yulia V.</creatorcontrib><creatorcontrib>Shmatko, Natalia A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of informetrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katchanov, Yurij L.</au><au>Markova, Yulia V.</au><au>Shmatko, Natalia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncited papers in the structure of scientific communication</atitle><jtitle>Journal of informetrics</jtitle><date>2023-05</date><risdate>2023</risdate><volume>17</volume><issue>2</issue><spage>101391</spage><pages>101391-</pages><artnum>101391</artnum><issn>1751-1577</issn><eissn>1875-5879</eissn><abstract>•The citations of 729,515 articles fit by the generalized extreme-value distribution.•The complexity of references and citations of papers’ quantiles is studied.•The macroscopic model of the citation distribution is proposed. The paper presents an in-depth study of uncited papers. For that, we explore the documents indexed in the INSPIRE database from 1970 to 2015. Uncited articles represent a complex bibliometric environment in which references are generated. The reference lists of uncited papers form a dynamic system partially responsible for the redistribution of scientific impact. Our task is to quantify the detailed structure of citations and references directly in terms of quantiles. We also study the entropy and the statistical complexity measure of references and citations of papers’ quantiles. We introduce a theoretical framework in which citation distribution is considered an asymptotic distribution of the largest values in a sequence of independent identically distributed random variables. We show that this asymptotic distribution is the generalized extreme-value distribution. Furthermore, we empirically demonstrate that the asymptotic behavior of citation distribution is close to (but not quite) the generalized extreme-value distribution.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.joi.2023.101391</doi><orcidid>https://orcid.org/0000-0001-6836-5549</orcidid><orcidid>https://orcid.org/0000-0001-8202-8370</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-1577
ispartof Journal of informetrics, 2023-05, Vol.17 (2), p.101391, Article 101391
issn 1751-1577
1875-5879
language eng
recordid cdi_crossref_primary_10_1016_j_joi_2023_101391
source ScienceDirect Freedom Collection
subjects Bibliometrics
Citation analysis
INSPIRE
Uncited papers
Uncitness
title Uncited papers in the structure of scientific communication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncited%20papers%20in%20the%20structure%20of%20scientific%20communication&rft.jtitle=Journal%20of%20informetrics&rft.au=Katchanov,%20Yurij%20L.&rft.date=2023-05&rft.volume=17&rft.issue=2&rft.spage=101391&rft.pages=101391-&rft.artnum=101391&rft.issn=1751-1577&rft.eissn=1875-5879&rft_id=info:doi/10.1016/j.joi.2023.101391&rft_dat=%3Celsevier_cross%3ES1751157723000160%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-26269d41e55b8d987dd216db7758c1136e71a5411738e1e79313a968aa4452ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true