Loading…

On the joins of group rings

Given a collection {Gi}i=1d of finite groups and a ring R, we define a subring of the ring Mn(R) (n=∑i=1d|Gi|) that encompasses all the individual group rings R[Gi] along the diagonal blocks as Gi-circulant matrices. The precise definition of this ring was inspired by a construction in graph theory...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pure and applied algebra 2023-09, Vol.227 (9), p.107377, Article 107377
Main Authors: Chebolu, Sunil K., Merzel, Jonathan L., Mináč, Ján, Muller, Lyle, Nguyen, Tung T., Pasini, Federico W., Tân, Nguyễn Duy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-402c875360dfdbbd9a1d76242be32a9a322dfd0167d103d1aee0fe36769d43703
cites cdi_FETCH-LOGICAL-c300t-402c875360dfdbbd9a1d76242be32a9a322dfd0167d103d1aee0fe36769d43703
container_end_page
container_issue 9
container_start_page 107377
container_title Journal of pure and applied algebra
container_volume 227
creator Chebolu, Sunil K.
Merzel, Jonathan L.
Mináč, Ján
Muller, Lyle
Nguyen, Tung T.
Pasini, Federico W.
Tân, Nguyễn Duy
description Given a collection {Gi}i=1d of finite groups and a ring R, we define a subring of the ring Mn(R) (n=∑i=1d|Gi|) that encompasses all the individual group rings R[Gi] along the diagonal blocks as Gi-circulant matrices. The precise definition of this ring was inspired by a construction in graph theory known as the joined union of graphs. We call this ring the join of group rings and denote it by JG1,…,Gd(R). In this paper, we present a systematic study of the algebraic structure of JG1,…,Gd(R). We show that it has a ring structure and characterize its center, group of units, and Jacobson radical. When R=k is an algebraically closed field, we derive a formula for the number of irreducible modules over JG1,…,Gd(k). We also show how a blockwise extension of the Fourier transform provides both a generalization of the Circulant Diagonalization Theorem to joins of circulant matrices and an explicit isomorphism between the join algebra and its Wedderburn components.
doi_str_mv 10.1016/j.jpaa.2023.107377
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jpaa_2023_107377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022404923000609</els_id><sourcerecordid>S0022404923000609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-402c875360dfdbbd9a1d76242be32a9a322dfd0167d103d1aee0fe36769d43703</originalsourceid><addsrcrecordid>eNp9j8FKxDAURYMoWGf8Ad30B1pf8moyBTcy6CgMzMZZhzR5HVO0LUkV_HtT6trVg_s4l3sYu-FQcuDyriu70ZhSgMAUKFTqjGV8o7DgqOQ5ywCEKCqo6kt2FWMHABwrmbHbQ59P75R3g-9jPrT5KQxfYx58f4prdtGaj0jXf3fFjs9Pb9uXYn_YvW4f94VFgCm1CrtR9yjBta5pXG24U1JUoiEUpjYoRHqklcpxQMcNEbSEUsnaVagAV0wsvTYMMQZq9Rj8pwk_moOe9XSnZz096-lFL0EPC0Rp2benoKP11FtyPpCdtBv8f_gvkKRWmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the joins of group rings</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Chebolu, Sunil K. ; Merzel, Jonathan L. ; Mináč, Ján ; Muller, Lyle ; Nguyen, Tung T. ; Pasini, Federico W. ; Tân, Nguyễn Duy</creator><creatorcontrib>Chebolu, Sunil K. ; Merzel, Jonathan L. ; Mináč, Ján ; Muller, Lyle ; Nguyen, Tung T. ; Pasini, Federico W. ; Tân, Nguyễn Duy</creatorcontrib><description>Given a collection {Gi}i=1d of finite groups and a ring R, we define a subring of the ring Mn(R) (n=∑i=1d|Gi|) that encompasses all the individual group rings R[Gi] along the diagonal blocks as Gi-circulant matrices. The precise definition of this ring was inspired by a construction in graph theory known as the joined union of graphs. We call this ring the join of group rings and denote it by JG1,…,Gd(R). In this paper, we present a systematic study of the algebraic structure of JG1,…,Gd(R). We show that it has a ring structure and characterize its center, group of units, and Jacobson radical. When R=k is an algebraically closed field, we derive a formula for the number of irreducible modules over JG1,…,Gd(k). We also show how a blockwise extension of the Fourier transform provides both a generalization of the Circulant Diagonalization Theorem to joins of circulant matrices and an explicit isomorphism between the join algebra and its Wedderburn components.</description><identifier>ISSN: 0022-4049</identifier><identifier>EISSN: 1873-1376</identifier><identifier>DOI: 10.1016/j.jpaa.2023.107377</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artin-Wedderburn ; Augmentation map ; G-circulant matrices ; Group of units ; Group rings ; Jacobson radical</subject><ispartof>Journal of pure and applied algebra, 2023-09, Vol.227 (9), p.107377, Article 107377</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-402c875360dfdbbd9a1d76242be32a9a322dfd0167d103d1aee0fe36769d43703</citedby><cites>FETCH-LOGICAL-c300t-402c875360dfdbbd9a1d76242be32a9a322dfd0167d103d1aee0fe36769d43703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chebolu, Sunil K.</creatorcontrib><creatorcontrib>Merzel, Jonathan L.</creatorcontrib><creatorcontrib>Mináč, Ján</creatorcontrib><creatorcontrib>Muller, Lyle</creatorcontrib><creatorcontrib>Nguyen, Tung T.</creatorcontrib><creatorcontrib>Pasini, Federico W.</creatorcontrib><creatorcontrib>Tân, Nguyễn Duy</creatorcontrib><title>On the joins of group rings</title><title>Journal of pure and applied algebra</title><description>Given a collection {Gi}i=1d of finite groups and a ring R, we define a subring of the ring Mn(R) (n=∑i=1d|Gi|) that encompasses all the individual group rings R[Gi] along the diagonal blocks as Gi-circulant matrices. The precise definition of this ring was inspired by a construction in graph theory known as the joined union of graphs. We call this ring the join of group rings and denote it by JG1,…,Gd(R). In this paper, we present a systematic study of the algebraic structure of JG1,…,Gd(R). We show that it has a ring structure and characterize its center, group of units, and Jacobson radical. When R=k is an algebraically closed field, we derive a formula for the number of irreducible modules over JG1,…,Gd(k). We also show how a blockwise extension of the Fourier transform provides both a generalization of the Circulant Diagonalization Theorem to joins of circulant matrices and an explicit isomorphism between the join algebra and its Wedderburn components.</description><subject>Artin-Wedderburn</subject><subject>Augmentation map</subject><subject>G-circulant matrices</subject><subject>Group of units</subject><subject>Group rings</subject><subject>Jacobson radical</subject><issn>0022-4049</issn><issn>1873-1376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j8FKxDAURYMoWGf8Ad30B1pf8moyBTcy6CgMzMZZhzR5HVO0LUkV_HtT6trVg_s4l3sYu-FQcuDyriu70ZhSgMAUKFTqjGV8o7DgqOQ5ywCEKCqo6kt2FWMHABwrmbHbQ59P75R3g-9jPrT5KQxfYx58f4prdtGaj0jXf3fFjs9Pb9uXYn_YvW4f94VFgCm1CrtR9yjBta5pXG24U1JUoiEUpjYoRHqklcpxQMcNEbSEUsnaVagAV0wsvTYMMQZq9Rj8pwk_moOe9XSnZz096-lFL0EPC0Rp2benoKP11FtyPpCdtBv8f_gvkKRWmA</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Chebolu, Sunil K.</creator><creator>Merzel, Jonathan L.</creator><creator>Mináč, Ján</creator><creator>Muller, Lyle</creator><creator>Nguyen, Tung T.</creator><creator>Pasini, Federico W.</creator><creator>Tân, Nguyễn Duy</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202309</creationdate><title>On the joins of group rings</title><author>Chebolu, Sunil K. ; Merzel, Jonathan L. ; Mináč, Ján ; Muller, Lyle ; Nguyen, Tung T. ; Pasini, Federico W. ; Tân, Nguyễn Duy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-402c875360dfdbbd9a1d76242be32a9a322dfd0167d103d1aee0fe36769d43703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artin-Wedderburn</topic><topic>Augmentation map</topic><topic>G-circulant matrices</topic><topic>Group of units</topic><topic>Group rings</topic><topic>Jacobson radical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chebolu, Sunil K.</creatorcontrib><creatorcontrib>Merzel, Jonathan L.</creatorcontrib><creatorcontrib>Mináč, Ján</creatorcontrib><creatorcontrib>Muller, Lyle</creatorcontrib><creatorcontrib>Nguyen, Tung T.</creatorcontrib><creatorcontrib>Pasini, Federico W.</creatorcontrib><creatorcontrib>Tân, Nguyễn Duy</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of pure and applied algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chebolu, Sunil K.</au><au>Merzel, Jonathan L.</au><au>Mináč, Ján</au><au>Muller, Lyle</au><au>Nguyen, Tung T.</au><au>Pasini, Federico W.</au><au>Tân, Nguyễn Duy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the joins of group rings</atitle><jtitle>Journal of pure and applied algebra</jtitle><date>2023-09</date><risdate>2023</risdate><volume>227</volume><issue>9</issue><spage>107377</spage><pages>107377-</pages><artnum>107377</artnum><issn>0022-4049</issn><eissn>1873-1376</eissn><abstract>Given a collection {Gi}i=1d of finite groups and a ring R, we define a subring of the ring Mn(R) (n=∑i=1d|Gi|) that encompasses all the individual group rings R[Gi] along the diagonal blocks as Gi-circulant matrices. The precise definition of this ring was inspired by a construction in graph theory known as the joined union of graphs. We call this ring the join of group rings and denote it by JG1,…,Gd(R). In this paper, we present a systematic study of the algebraic structure of JG1,…,Gd(R). We show that it has a ring structure and characterize its center, group of units, and Jacobson radical. When R=k is an algebraically closed field, we derive a formula for the number of irreducible modules over JG1,…,Gd(k). We also show how a blockwise extension of the Fourier transform provides both a generalization of the Circulant Diagonalization Theorem to joins of circulant matrices and an explicit isomorphism between the join algebra and its Wedderburn components.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jpaa.2023.107377</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-4049
ispartof Journal of pure and applied algebra, 2023-09, Vol.227 (9), p.107377, Article 107377
issn 0022-4049
1873-1376
language eng
recordid cdi_crossref_primary_10_1016_j_jpaa_2023_107377
source ScienceDirect Freedom Collection 2022-2024
subjects Artin-Wedderburn
Augmentation map
G-circulant matrices
Group of units
Group rings
Jacobson radical
title On the joins of group rings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20joins%20of%20group%20rings&rft.jtitle=Journal%20of%20pure%20and%20applied%20algebra&rft.au=Chebolu,%20Sunil%20K.&rft.date=2023-09&rft.volume=227&rft.issue=9&rft.spage=107377&rft.pages=107377-&rft.artnum=107377&rft.issn=0022-4049&rft.eissn=1873-1376&rft_id=info:doi/10.1016/j.jpaa.2023.107377&rft_dat=%3Celsevier_cross%3ES0022404923000609%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-402c875360dfdbbd9a1d76242be32a9a322dfd0167d103d1aee0fe36769d43703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true