Loading…

Local Gorenstein duality in chromatic group cohomology

We consider local Gorenstein duality for cochain spectra C⁎(BG;R) on the classifying spaces of compact Lie groups G over complex orientable ring spectra R. We show that it holds systematically for a large array of examples of ring spectra R, including Lubin-Tate theories, topological K-theory, and v...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pure and applied algebra 2023-11, Vol.227 (11), p.107422, Article 107422
Main Authors: Pol, Luca, Williamson, Jordan
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c251t-d14fa26c22fab3e337457f1cbc3699beb0be6c24a857f53c6acce9e4862553b83
container_end_page
container_issue 11
container_start_page 107422
container_title Journal of pure and applied algebra
container_volume 227
creator Pol, Luca
Williamson, Jordan
description We consider local Gorenstein duality for cochain spectra C⁎(BG;R) on the classifying spaces of compact Lie groups G over complex orientable ring spectra R. We show that it holds systematically for a large array of examples of ring spectra R, including Lubin-Tate theories, topological K-theory, and various forms of topological modular forms. We also prove a descent result for local Gorenstein duality which allows us to access further examples.
doi_str_mv 10.1016/j.jpaa.2023.107422
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jpaa_2023_107422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022404923001056</els_id><sourcerecordid>S0022404923001056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-d14fa26c22fab3e337457f1cbc3699beb0be6c24a857f53c6acce9e4862553b83</originalsourceid><addsrcrecordid>eNp9j01PhDAQhhujibj6BzzxB8B-USDxYja6mpB40XNThmG3BChpWRP-vWzw7Gkm75tnMg8hj4ymjDL11KXdZEzKKRdrkEvOr0jEilwkTOTqmkSUcp5IKstbchdCRyllQqqIqMqB6eOD8ziGGe0YN2fT23mJ1xVO3g1mthAfvTtPMbiTG1zvjss9uWlNH_Dhb-7I99vr1_49qT4PH_uXKgGesTlpmGwNV8B5a2qBQuQyy1sGNQhVljXWtMa1laZY40yAMgBYoiwUzzJRF2JH-HYXvAvBY6snbwfjF82ovpjrTl_M9cVcb-Yr9LxBuH72Y9HrABZHwMZ6hFk3zv6H_wJinWIj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local Gorenstein duality in chromatic group cohomology</title><source>ScienceDirect Freedom Collection</source><creator>Pol, Luca ; Williamson, Jordan</creator><creatorcontrib>Pol, Luca ; Williamson, Jordan</creatorcontrib><description>We consider local Gorenstein duality for cochain spectra C⁎(BG;R) on the classifying spaces of compact Lie groups G over complex orientable ring spectra R. We show that it holds systematically for a large array of examples of ring spectra R, including Lubin-Tate theories, topological K-theory, and various forms of topological modular forms. We also prove a descent result for local Gorenstein duality which allows us to access further examples.</description><identifier>ISSN: 0022-4049</identifier><identifier>EISSN: 1873-1376</identifier><identifier>DOI: 10.1016/j.jpaa.2023.107422</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Journal of pure and applied algebra, 2023-11, Vol.227 (11), p.107422, Article 107422</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-d14fa26c22fab3e337457f1cbc3699beb0be6c24a857f53c6acce9e4862553b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pol, Luca</creatorcontrib><creatorcontrib>Williamson, Jordan</creatorcontrib><title>Local Gorenstein duality in chromatic group cohomology</title><title>Journal of pure and applied algebra</title><description>We consider local Gorenstein duality for cochain spectra C⁎(BG;R) on the classifying spaces of compact Lie groups G over complex orientable ring spectra R. We show that it holds systematically for a large array of examples of ring spectra R, including Lubin-Tate theories, topological K-theory, and various forms of topological modular forms. We also prove a descent result for local Gorenstein duality which allows us to access further examples.</description><issn>0022-4049</issn><issn>1873-1376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j01PhDAQhhujibj6BzzxB8B-USDxYja6mpB40XNThmG3BChpWRP-vWzw7Gkm75tnMg8hj4ymjDL11KXdZEzKKRdrkEvOr0jEilwkTOTqmkSUcp5IKstbchdCRyllQqqIqMqB6eOD8ziGGe0YN2fT23mJ1xVO3g1mthAfvTtPMbiTG1zvjss9uWlNH_Dhb-7I99vr1_49qT4PH_uXKgGesTlpmGwNV8B5a2qBQuQyy1sGNQhVljXWtMa1laZY40yAMgBYoiwUzzJRF2JH-HYXvAvBY6snbwfjF82ovpjrTl_M9cVcb-Yr9LxBuH72Y9HrABZHwMZ6hFk3zv6H_wJinWIj</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Pol, Luca</creator><creator>Williamson, Jordan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202311</creationdate><title>Local Gorenstein duality in chromatic group cohomology</title><author>Pol, Luca ; Williamson, Jordan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-d14fa26c22fab3e337457f1cbc3699beb0be6c24a857f53c6acce9e4862553b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pol, Luca</creatorcontrib><creatorcontrib>Williamson, Jordan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of pure and applied algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pol, Luca</au><au>Williamson, Jordan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Gorenstein duality in chromatic group cohomology</atitle><jtitle>Journal of pure and applied algebra</jtitle><date>2023-11</date><risdate>2023</risdate><volume>227</volume><issue>11</issue><spage>107422</spage><pages>107422-</pages><artnum>107422</artnum><issn>0022-4049</issn><eissn>1873-1376</eissn><abstract>We consider local Gorenstein duality for cochain spectra C⁎(BG;R) on the classifying spaces of compact Lie groups G over complex orientable ring spectra R. We show that it holds systematically for a large array of examples of ring spectra R, including Lubin-Tate theories, topological K-theory, and various forms of topological modular forms. We also prove a descent result for local Gorenstein duality which allows us to access further examples.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jpaa.2023.107422</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-4049
ispartof Journal of pure and applied algebra, 2023-11, Vol.227 (11), p.107422, Article 107422
issn 0022-4049
1873-1376
language eng
recordid cdi_crossref_primary_10_1016_j_jpaa_2023_107422
source ScienceDirect Freedom Collection
title Local Gorenstein duality in chromatic group cohomology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Gorenstein%20duality%20in%20chromatic%20group%20cohomology&rft.jtitle=Journal%20of%20pure%20and%20applied%20algebra&rft.au=Pol,%20Luca&rft.date=2023-11&rft.volume=227&rft.issue=11&rft.spage=107422&rft.pages=107422-&rft.artnum=107422&rft.issn=0022-4049&rft.eissn=1873-1376&rft_id=info:doi/10.1016/j.jpaa.2023.107422&rft_dat=%3Celsevier_cross%3ES0022404923001056%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-d14fa26c22fab3e337457f1cbc3699beb0be6c24a857f53c6acce9e4862553b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true