Loading…

First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells

The key strategy to enhance the intra-molecular push-pull effects by broadening the optial absorption of small molecule based organic photovoltaic (SM-OPV) materials is considered an effective approach to enhance the power conversion efficiencies (PCEs) of SM-OPV devices. However, in case of accepto...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physics and chemistry of solids 2021-10, Vol.157, p.110202, Article 110202
Main Authors: Mehboob, Muhammad Yasir, Hussain, Riaz, Asif Iqbal, Malik Muhammad, Irshad, Zobia, Adnan, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183
cites cdi_FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183
container_end_page
container_issue
container_start_page 110202
container_title The Journal of physics and chemistry of solids
container_volume 157
creator Mehboob, Muhammad Yasir
Hussain, Riaz
Asif Iqbal, Malik Muhammad
Irshad, Zobia
Adnan, Muhammad
description The key strategy to enhance the intra-molecular push-pull effects by broadening the optial absorption of small molecule based organic photovoltaic (SM-OPV) materials is considered an effective approach to enhance the power conversion efficiencies (PCEs) of SM-OPV devices. However, in case of acceptor materials, the highly desirable molecular modelling strategy of halogenation generally effects in downward-shifting of molecular energy levels, resulting decrease in open-circuit voltages (Voc) in the devices. Herein, we investigate a fluorinated, chlorinated and cyanide (CN) based end-capped acceptor materials, which shows a broader optical absorption phenomenon and exhibited a good voltages than it chlorinated counterparts. These new molecularly engineered SM-OPV were characterize theoretically by density functional theory (DFT) and time-dependent (TD-DFT) approaches. The estimation of electron/hole mobility, and Voc was done by calculating the geometric parameters, electronic structures, frontier molecular orbitals (FMOs), charge transfer rates, and exciton binding energies of the designed OPV materials. The outcomes of these investigations revealed that all newly engineered SM-OPV acceptor materials displays an enhanced exciton dissociation and absorption efficiency and underneath LUMO levels which might be responsible to improve the Voc, reorganization energies, and photo-current density parametrs, resulting enhancement in the PCEs of the organic solar cells (OSC) devices. [Display omitted] •Non-fullerene acceptor molecules (SiOA1-SiOA5) are studied for organic solar cells applications.•Significant lowering of energy gap with concomitant red shifting of the absorption spectra is achieved.•All acceptor molecules have remarkable optoelectronic properties compared to R.
doi_str_mv 10.1016/j.jpcs.2021.110202
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jpcs_2021_110202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022369721002687</els_id><sourcerecordid>S0022369721002687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183</originalsourceid><addsrcrecordid>eNp9kM1KxDAQgIMouP68gKe8QNck3bZb8CL-g-BF8RjGZLKdJduUJCz4TL6kKevZ0wzDfPPzMXYlxVIK2V5vl9vJpKUSSi6lFCUesYVcd32lmqY-ZgshlKrqtu9O2VlKWyFEI3u5YD-PFFPmU6TR0OSR5wFDxEwGPLeYaDPSuOHB8c8qDTCh5feUB8IxJPLBY_UFqRTBGJxyiHwHGSOBT3yA_Yyic2RKf1kyhBz2wWcgUzaGCWMmTNwVbKDNUJVCyXcwGuQhbmAsfSl4iNyg9-mCnbgyGC__4jn7eHx4v3uuXt-eXu5uXytTC5GrGldOlq9lv5YNWNOhaISqwYJ0qGz7ZW0DuGqlXUHfOATVtqIXCl3nTCfX9TlTh7kmhpQiOl307CB-ayn0rFtv9axbz7r1QXeBbg4Qlsv2hFGn-WuDliKarG2g__Bf51KPDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells</title><source>Elsevier</source><creator>Mehboob, Muhammad Yasir ; Hussain, Riaz ; Asif Iqbal, Malik Muhammad ; Irshad, Zobia ; Adnan, Muhammad</creator><creatorcontrib>Mehboob, Muhammad Yasir ; Hussain, Riaz ; Asif Iqbal, Malik Muhammad ; Irshad, Zobia ; Adnan, Muhammad</creatorcontrib><description>The key strategy to enhance the intra-molecular push-pull effects by broadening the optial absorption of small molecule based organic photovoltaic (SM-OPV) materials is considered an effective approach to enhance the power conversion efficiencies (PCEs) of SM-OPV devices. However, in case of acceptor materials, the highly desirable molecular modelling strategy of halogenation generally effects in downward-shifting of molecular energy levels, resulting decrease in open-circuit voltages (Voc) in the devices. Herein, we investigate a fluorinated, chlorinated and cyanide (CN) based end-capped acceptor materials, which shows a broader optical absorption phenomenon and exhibited a good voltages than it chlorinated counterparts. These new molecularly engineered SM-OPV were characterize theoretically by density functional theory (DFT) and time-dependent (TD-DFT) approaches. The estimation of electron/hole mobility, and Voc was done by calculating the geometric parameters, electronic structures, frontier molecular orbitals (FMOs), charge transfer rates, and exciton binding energies of the designed OPV materials. The outcomes of these investigations revealed that all newly engineered SM-OPV acceptor materials displays an enhanced exciton dissociation and absorption efficiency and underneath LUMO levels which might be responsible to improve the Voc, reorganization energies, and photo-current density parametrs, resulting enhancement in the PCEs of the organic solar cells (OSC) devices. [Display omitted] •Non-fullerene acceptor molecules (SiOA1-SiOA5) are studied for organic solar cells applications.•Significant lowering of energy gap with concomitant red shifting of the absorption spectra is achieved.•All acceptor molecules have remarkable optoelectronic properties compared to R.</description><identifier>ISSN: 0022-3697</identifier><identifier>EISSN: 1879-2553</identifier><identifier>DOI: 10.1016/j.jpcs.2021.110202</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>And W-Shaped acceptors ; End-capped modifications ; Open-circuit voltages ; OSCs ; Power conversion efficiency</subject><ispartof>The Journal of physics and chemistry of solids, 2021-10, Vol.157, p.110202, Article 110202</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183</citedby><cites>FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183</cites><orcidid>0000-0001-9224-3824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mehboob, Muhammad Yasir</creatorcontrib><creatorcontrib>Hussain, Riaz</creatorcontrib><creatorcontrib>Asif Iqbal, Malik Muhammad</creatorcontrib><creatorcontrib>Irshad, Zobia</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><title>First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells</title><title>The Journal of physics and chemistry of solids</title><description>The key strategy to enhance the intra-molecular push-pull effects by broadening the optial absorption of small molecule based organic photovoltaic (SM-OPV) materials is considered an effective approach to enhance the power conversion efficiencies (PCEs) of SM-OPV devices. However, in case of acceptor materials, the highly desirable molecular modelling strategy of halogenation generally effects in downward-shifting of molecular energy levels, resulting decrease in open-circuit voltages (Voc) in the devices. Herein, we investigate a fluorinated, chlorinated and cyanide (CN) based end-capped acceptor materials, which shows a broader optical absorption phenomenon and exhibited a good voltages than it chlorinated counterparts. These new molecularly engineered SM-OPV were characterize theoretically by density functional theory (DFT) and time-dependent (TD-DFT) approaches. The estimation of electron/hole mobility, and Voc was done by calculating the geometric parameters, electronic structures, frontier molecular orbitals (FMOs), charge transfer rates, and exciton binding energies of the designed OPV materials. The outcomes of these investigations revealed that all newly engineered SM-OPV acceptor materials displays an enhanced exciton dissociation and absorption efficiency and underneath LUMO levels which might be responsible to improve the Voc, reorganization energies, and photo-current density parametrs, resulting enhancement in the PCEs of the organic solar cells (OSC) devices. [Display omitted] •Non-fullerene acceptor molecules (SiOA1-SiOA5) are studied for organic solar cells applications.•Significant lowering of energy gap with concomitant red shifting of the absorption spectra is achieved.•All acceptor molecules have remarkable optoelectronic properties compared to R.</description><subject>And W-Shaped acceptors</subject><subject>End-capped modifications</subject><subject>Open-circuit voltages</subject><subject>OSCs</subject><subject>Power conversion efficiency</subject><issn>0022-3697</issn><issn>1879-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAQgIMouP68gKe8QNck3bZb8CL-g-BF8RjGZLKdJduUJCz4TL6kKevZ0wzDfPPzMXYlxVIK2V5vl9vJpKUSSi6lFCUesYVcd32lmqY-ZgshlKrqtu9O2VlKWyFEI3u5YD-PFFPmU6TR0OSR5wFDxEwGPLeYaDPSuOHB8c8qDTCh5feUB8IxJPLBY_UFqRTBGJxyiHwHGSOBT3yA_Yyic2RKf1kyhBz2wWcgUzaGCWMmTNwVbKDNUJVCyXcwGuQhbmAsfSl4iNyg9-mCnbgyGC__4jn7eHx4v3uuXt-eXu5uXytTC5GrGldOlq9lv5YNWNOhaISqwYJ0qGz7ZW0DuGqlXUHfOATVtqIXCl3nTCfX9TlTh7kmhpQiOl307CB-ayn0rFtv9axbz7r1QXeBbg4Qlsv2hFGn-WuDliKarG2g__Bf51KPDQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Mehboob, Muhammad Yasir</creator><creator>Hussain, Riaz</creator><creator>Asif Iqbal, Malik Muhammad</creator><creator>Irshad, Zobia</creator><creator>Adnan, Muhammad</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9224-3824</orcidid></search><sort><creationdate>202110</creationdate><title>First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells</title><author>Mehboob, Muhammad Yasir ; Hussain, Riaz ; Asif Iqbal, Malik Muhammad ; Irshad, Zobia ; Adnan, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>And W-Shaped acceptors</topic><topic>End-capped modifications</topic><topic>Open-circuit voltages</topic><topic>OSCs</topic><topic>Power conversion efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehboob, Muhammad Yasir</creatorcontrib><creatorcontrib>Hussain, Riaz</creatorcontrib><creatorcontrib>Asif Iqbal, Malik Muhammad</creatorcontrib><creatorcontrib>Irshad, Zobia</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of physics and chemistry of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehboob, Muhammad Yasir</au><au>Hussain, Riaz</au><au>Asif Iqbal, Malik Muhammad</au><au>Irshad, Zobia</au><au>Adnan, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells</atitle><jtitle>The Journal of physics and chemistry of solids</jtitle><date>2021-10</date><risdate>2021</risdate><volume>157</volume><spage>110202</spage><pages>110202-</pages><artnum>110202</artnum><issn>0022-3697</issn><eissn>1879-2553</eissn><abstract>The key strategy to enhance the intra-molecular push-pull effects by broadening the optial absorption of small molecule based organic photovoltaic (SM-OPV) materials is considered an effective approach to enhance the power conversion efficiencies (PCEs) of SM-OPV devices. However, in case of acceptor materials, the highly desirable molecular modelling strategy of halogenation generally effects in downward-shifting of molecular energy levels, resulting decrease in open-circuit voltages (Voc) in the devices. Herein, we investigate a fluorinated, chlorinated and cyanide (CN) based end-capped acceptor materials, which shows a broader optical absorption phenomenon and exhibited a good voltages than it chlorinated counterparts. These new molecularly engineered SM-OPV were characterize theoretically by density functional theory (DFT) and time-dependent (TD-DFT) approaches. The estimation of electron/hole mobility, and Voc was done by calculating the geometric parameters, electronic structures, frontier molecular orbitals (FMOs), charge transfer rates, and exciton binding energies of the designed OPV materials. The outcomes of these investigations revealed that all newly engineered SM-OPV acceptor materials displays an enhanced exciton dissociation and absorption efficiency and underneath LUMO levels which might be responsible to improve the Voc, reorganization energies, and photo-current density parametrs, resulting enhancement in the PCEs of the organic solar cells (OSC) devices. [Display omitted] •Non-fullerene acceptor molecules (SiOA1-SiOA5) are studied for organic solar cells applications.•Significant lowering of energy gap with concomitant red shifting of the absorption spectra is achieved.•All acceptor molecules have remarkable optoelectronic properties compared to R.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jpcs.2021.110202</doi><orcidid>https://orcid.org/0000-0001-9224-3824</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3697
ispartof The Journal of physics and chemistry of solids, 2021-10, Vol.157, p.110202, Article 110202
issn 0022-3697
1879-2553
language eng
recordid cdi_crossref_primary_10_1016_j_jpcs_2021_110202
source Elsevier
subjects And W-Shaped acceptors
End-capped modifications
Open-circuit voltages
OSCs
Power conversion efficiency
title First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principle%20theoretical%20designing%20of%20W-shaped%20Dithienosilole-based%20acceptor%20materials%20having%20efficient%20photovoltaic%20properties%20for%20high-performance%20organic%20solar%20cells&rft.jtitle=The%20Journal%20of%20physics%20and%20chemistry%20of%20solids&rft.au=Mehboob,%20Muhammad%20Yasir&rft.date=2021-10&rft.volume=157&rft.spage=110202&rft.pages=110202-&rft.artnum=110202&rft.issn=0022-3697&rft.eissn=1879-2553&rft_id=info:doi/10.1016/j.jpcs.2021.110202&rft_dat=%3Celsevier_cross%3ES0022369721002687%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true