Loading…
First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells
The key strategy to enhance the intra-molecular push-pull effects by broadening the optial absorption of small molecule based organic photovoltaic (SM-OPV) materials is considered an effective approach to enhance the power conversion efficiencies (PCEs) of SM-OPV devices. However, in case of accepto...
Saved in:
Published in: | The Journal of physics and chemistry of solids 2021-10, Vol.157, p.110202, Article 110202 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183 |
container_end_page | |
container_issue | |
container_start_page | 110202 |
container_title | The Journal of physics and chemistry of solids |
container_volume | 157 |
creator | Mehboob, Muhammad Yasir Hussain, Riaz Asif Iqbal, Malik Muhammad Irshad, Zobia Adnan, Muhammad |
description | The key strategy to enhance the intra-molecular push-pull effects by broadening the optial absorption of small molecule based organic photovoltaic (SM-OPV) materials is considered an effective approach to enhance the power conversion efficiencies (PCEs) of SM-OPV devices. However, in case of acceptor materials, the highly desirable molecular modelling strategy of halogenation generally effects in downward-shifting of molecular energy levels, resulting decrease in open-circuit voltages (Voc) in the devices. Herein, we investigate a fluorinated, chlorinated and cyanide (CN) based end-capped acceptor materials, which shows a broader optical absorption phenomenon and exhibited a good voltages than it chlorinated counterparts. These new molecularly engineered SM-OPV were characterize theoretically by density functional theory (DFT) and time-dependent (TD-DFT) approaches. The estimation of electron/hole mobility, and Voc was done by calculating the geometric parameters, electronic structures, frontier molecular orbitals (FMOs), charge transfer rates, and exciton binding energies of the designed OPV materials. The outcomes of these investigations revealed that all newly engineered SM-OPV acceptor materials displays an enhanced exciton dissociation and absorption efficiency and underneath LUMO levels which might be responsible to improve the Voc, reorganization energies, and photo-current density parametrs, resulting enhancement in the PCEs of the organic solar cells (OSC) devices.
[Display omitted]
•Non-fullerene acceptor molecules (SiOA1-SiOA5) are studied for organic solar cells applications.•Significant lowering of energy gap with concomitant red shifting of the absorption spectra is achieved.•All acceptor molecules have remarkable optoelectronic properties compared to R. |
doi_str_mv | 10.1016/j.jpcs.2021.110202 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jpcs_2021_110202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022369721002687</els_id><sourcerecordid>S0022369721002687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183</originalsourceid><addsrcrecordid>eNp9kM1KxDAQgIMouP68gKe8QNck3bZb8CL-g-BF8RjGZLKdJduUJCz4TL6kKevZ0wzDfPPzMXYlxVIK2V5vl9vJpKUSSi6lFCUesYVcd32lmqY-ZgshlKrqtu9O2VlKWyFEI3u5YD-PFFPmU6TR0OSR5wFDxEwGPLeYaDPSuOHB8c8qDTCh5feUB8IxJPLBY_UFqRTBGJxyiHwHGSOBT3yA_Yyic2RKf1kyhBz2wWcgUzaGCWMmTNwVbKDNUJVCyXcwGuQhbmAsfSl4iNyg9-mCnbgyGC__4jn7eHx4v3uuXt-eXu5uXytTC5GrGldOlq9lv5YNWNOhaISqwYJ0qGz7ZW0DuGqlXUHfOATVtqIXCl3nTCfX9TlTh7kmhpQiOl307CB-ayn0rFtv9axbz7r1QXeBbg4Qlsv2hFGn-WuDliKarG2g__Bf51KPDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells</title><source>Elsevier</source><creator>Mehboob, Muhammad Yasir ; Hussain, Riaz ; Asif Iqbal, Malik Muhammad ; Irshad, Zobia ; Adnan, Muhammad</creator><creatorcontrib>Mehboob, Muhammad Yasir ; Hussain, Riaz ; Asif Iqbal, Malik Muhammad ; Irshad, Zobia ; Adnan, Muhammad</creatorcontrib><description>The key strategy to enhance the intra-molecular push-pull effects by broadening the optial absorption of small molecule based organic photovoltaic (SM-OPV) materials is considered an effective approach to enhance the power conversion efficiencies (PCEs) of SM-OPV devices. However, in case of acceptor materials, the highly desirable molecular modelling strategy of halogenation generally effects in downward-shifting of molecular energy levels, resulting decrease in open-circuit voltages (Voc) in the devices. Herein, we investigate a fluorinated, chlorinated and cyanide (CN) based end-capped acceptor materials, which shows a broader optical absorption phenomenon and exhibited a good voltages than it chlorinated counterparts. These new molecularly engineered SM-OPV were characterize theoretically by density functional theory (DFT) and time-dependent (TD-DFT) approaches. The estimation of electron/hole mobility, and Voc was done by calculating the geometric parameters, electronic structures, frontier molecular orbitals (FMOs), charge transfer rates, and exciton binding energies of the designed OPV materials. The outcomes of these investigations revealed that all newly engineered SM-OPV acceptor materials displays an enhanced exciton dissociation and absorption efficiency and underneath LUMO levels which might be responsible to improve the Voc, reorganization energies, and photo-current density parametrs, resulting enhancement in the PCEs of the organic solar cells (OSC) devices.
[Display omitted]
•Non-fullerene acceptor molecules (SiOA1-SiOA5) are studied for organic solar cells applications.•Significant lowering of energy gap with concomitant red shifting of the absorption spectra is achieved.•All acceptor molecules have remarkable optoelectronic properties compared to R.</description><identifier>ISSN: 0022-3697</identifier><identifier>EISSN: 1879-2553</identifier><identifier>DOI: 10.1016/j.jpcs.2021.110202</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>And W-Shaped acceptors ; End-capped modifications ; Open-circuit voltages ; OSCs ; Power conversion efficiency</subject><ispartof>The Journal of physics and chemistry of solids, 2021-10, Vol.157, p.110202, Article 110202</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183</citedby><cites>FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183</cites><orcidid>0000-0001-9224-3824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mehboob, Muhammad Yasir</creatorcontrib><creatorcontrib>Hussain, Riaz</creatorcontrib><creatorcontrib>Asif Iqbal, Malik Muhammad</creatorcontrib><creatorcontrib>Irshad, Zobia</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><title>First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells</title><title>The Journal of physics and chemistry of solids</title><description>The key strategy to enhance the intra-molecular push-pull effects by broadening the optial absorption of small molecule based organic photovoltaic (SM-OPV) materials is considered an effective approach to enhance the power conversion efficiencies (PCEs) of SM-OPV devices. However, in case of acceptor materials, the highly desirable molecular modelling strategy of halogenation generally effects in downward-shifting of molecular energy levels, resulting decrease in open-circuit voltages (Voc) in the devices. Herein, we investigate a fluorinated, chlorinated and cyanide (CN) based end-capped acceptor materials, which shows a broader optical absorption phenomenon and exhibited a good voltages than it chlorinated counterparts. These new molecularly engineered SM-OPV were characterize theoretically by density functional theory (DFT) and time-dependent (TD-DFT) approaches. The estimation of electron/hole mobility, and Voc was done by calculating the geometric parameters, electronic structures, frontier molecular orbitals (FMOs), charge transfer rates, and exciton binding energies of the designed OPV materials. The outcomes of these investigations revealed that all newly engineered SM-OPV acceptor materials displays an enhanced exciton dissociation and absorption efficiency and underneath LUMO levels which might be responsible to improve the Voc, reorganization energies, and photo-current density parametrs, resulting enhancement in the PCEs of the organic solar cells (OSC) devices.
[Display omitted]
•Non-fullerene acceptor molecules (SiOA1-SiOA5) are studied for organic solar cells applications.•Significant lowering of energy gap with concomitant red shifting of the absorption spectra is achieved.•All acceptor molecules have remarkable optoelectronic properties compared to R.</description><subject>And W-Shaped acceptors</subject><subject>End-capped modifications</subject><subject>Open-circuit voltages</subject><subject>OSCs</subject><subject>Power conversion efficiency</subject><issn>0022-3697</issn><issn>1879-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAQgIMouP68gKe8QNck3bZb8CL-g-BF8RjGZLKdJduUJCz4TL6kKevZ0wzDfPPzMXYlxVIK2V5vl9vJpKUSSi6lFCUesYVcd32lmqY-ZgshlKrqtu9O2VlKWyFEI3u5YD-PFFPmU6TR0OSR5wFDxEwGPLeYaDPSuOHB8c8qDTCh5feUB8IxJPLBY_UFqRTBGJxyiHwHGSOBT3yA_Yyic2RKf1kyhBz2wWcgUzaGCWMmTNwVbKDNUJVCyXcwGuQhbmAsfSl4iNyg9-mCnbgyGC__4jn7eHx4v3uuXt-eXu5uXytTC5GrGldOlq9lv5YNWNOhaISqwYJ0qGz7ZW0DuGqlXUHfOATVtqIXCl3nTCfX9TlTh7kmhpQiOl307CB-ayn0rFtv9axbz7r1QXeBbg4Qlsv2hFGn-WuDliKarG2g__Bf51KPDQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Mehboob, Muhammad Yasir</creator><creator>Hussain, Riaz</creator><creator>Asif Iqbal, Malik Muhammad</creator><creator>Irshad, Zobia</creator><creator>Adnan, Muhammad</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9224-3824</orcidid></search><sort><creationdate>202110</creationdate><title>First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells</title><author>Mehboob, Muhammad Yasir ; Hussain, Riaz ; Asif Iqbal, Malik Muhammad ; Irshad, Zobia ; Adnan, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>And W-Shaped acceptors</topic><topic>End-capped modifications</topic><topic>Open-circuit voltages</topic><topic>OSCs</topic><topic>Power conversion efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehboob, Muhammad Yasir</creatorcontrib><creatorcontrib>Hussain, Riaz</creatorcontrib><creatorcontrib>Asif Iqbal, Malik Muhammad</creatorcontrib><creatorcontrib>Irshad, Zobia</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of physics and chemistry of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehboob, Muhammad Yasir</au><au>Hussain, Riaz</au><au>Asif Iqbal, Malik Muhammad</au><au>Irshad, Zobia</au><au>Adnan, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells</atitle><jtitle>The Journal of physics and chemistry of solids</jtitle><date>2021-10</date><risdate>2021</risdate><volume>157</volume><spage>110202</spage><pages>110202-</pages><artnum>110202</artnum><issn>0022-3697</issn><eissn>1879-2553</eissn><abstract>The key strategy to enhance the intra-molecular push-pull effects by broadening the optial absorption of small molecule based organic photovoltaic (SM-OPV) materials is considered an effective approach to enhance the power conversion efficiencies (PCEs) of SM-OPV devices. However, in case of acceptor materials, the highly desirable molecular modelling strategy of halogenation generally effects in downward-shifting of molecular energy levels, resulting decrease in open-circuit voltages (Voc) in the devices. Herein, we investigate a fluorinated, chlorinated and cyanide (CN) based end-capped acceptor materials, which shows a broader optical absorption phenomenon and exhibited a good voltages than it chlorinated counterparts. These new molecularly engineered SM-OPV were characterize theoretically by density functional theory (DFT) and time-dependent (TD-DFT) approaches. The estimation of electron/hole mobility, and Voc was done by calculating the geometric parameters, electronic structures, frontier molecular orbitals (FMOs), charge transfer rates, and exciton binding energies of the designed OPV materials. The outcomes of these investigations revealed that all newly engineered SM-OPV acceptor materials displays an enhanced exciton dissociation and absorption efficiency and underneath LUMO levels which might be responsible to improve the Voc, reorganization energies, and photo-current density parametrs, resulting enhancement in the PCEs of the organic solar cells (OSC) devices.
[Display omitted]
•Non-fullerene acceptor molecules (SiOA1-SiOA5) are studied for organic solar cells applications.•Significant lowering of energy gap with concomitant red shifting of the absorption spectra is achieved.•All acceptor molecules have remarkable optoelectronic properties compared to R.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jpcs.2021.110202</doi><orcidid>https://orcid.org/0000-0001-9224-3824</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3697 |
ispartof | The Journal of physics and chemistry of solids, 2021-10, Vol.157, p.110202, Article 110202 |
issn | 0022-3697 1879-2553 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jpcs_2021_110202 |
source | Elsevier |
subjects | And W-Shaped acceptors End-capped modifications Open-circuit voltages OSCs Power conversion efficiency |
title | First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principle%20theoretical%20designing%20of%20W-shaped%20Dithienosilole-based%20acceptor%20materials%20having%20efficient%20photovoltaic%20properties%20for%20high-performance%20organic%20solar%20cells&rft.jtitle=The%20Journal%20of%20physics%20and%20chemistry%20of%20solids&rft.au=Mehboob,%20Muhammad%20Yasir&rft.date=2021-10&rft.volume=157&rft.spage=110202&rft.pages=110202-&rft.artnum=110202&rft.issn=0022-3697&rft.eissn=1879-2553&rft_id=info:doi/10.1016/j.jpcs.2021.110202&rft_dat=%3Celsevier_cross%3ES0022369721002687%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-3e4f155319815adc7e05023ada1fe2d6bdd5ae461d4a95fea2660902ef7fc7183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |