Loading…

Laser induced H2 production employing Pt-TiO2 photocatalysts

•The synthesis of various Pt-TiO2 photocatalysts by means of a photocatalytic reduction process.•Determination of the band gaps of Pt-TiO2 photocatalysts by diffuse reflectance spectroscopy.•Evaluation of these photocatalysts for laser induced production of H2 under mild conditions. The photocatalyt...

Full description

Saved in:
Bibliographic Details
Published in:Journal of photochemistry and photobiology. A, Chemistry. Chemistry., 2013-11, Vol.271, p.117-123
Main Authors: Falch, Anzel, Kriek, Roelof J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•The synthesis of various Pt-TiO2 photocatalysts by means of a photocatalytic reduction process.•Determination of the band gaps of Pt-TiO2 photocatalysts by diffuse reflectance spectroscopy.•Evaluation of these photocatalysts for laser induced production of H2 under mild conditions. The photocatalytic production of hydrogen from water as well as from an aqueous methanol solution employing pre-treated TiO2 and various Pt-TiO2 photocatalysts was studied by using an Nd:YAG laser as irradiation source. The photocatalysts (0.5, 1.0, 1.5 and 2.0wt% Pt-TiO2) were prepared by utilizing a photocatalytic reduction method upon which characterization by TEM and EDX were conducted. EDX indicated that the loading method was successful and TEM analysis confirmed the presence of Pt on the surface of TiO2 with a particle/cluster size between 11nm and 22nm. The impact of the loaded Pt on the band gaps of the different photocatalysts was investigated by diffuse reflectance spectroscopy (DRS) and calculated by means of the Kubelka–Munk method. The band gap values shifted sequentially from 3.236 to 3.100eV as the loading increased. The amount of H2 produced from the individual photocatalysts dispersed in both pure water and aqueous methanol solutions, was measured manually with a gas chromatograph. As soon as irradiation was initiated, a distinct color change from shades of gray to dark blue-gray was observed for all the photocatalysts. XRD confirmed that this was due to the part conversion of the anatase phase to the rutile phase. No H2 was detected for the various photocatalysts suspended in water, i.e. in the absence of methanol. The amount of H2 produced from the various Pt photocatalysts suspended in the aqueous methanol solution was found to be the highest for the 0.5wt% and 1.5wt% Pt-TiO2 photocatalysts and the lowest for the 2wt% Pt-TiO2.
ISSN:1010-6030
1873-2666
DOI:10.1016/j.jphotochem.2013.07.012