Loading…
New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells
Three new organic dyes (TD1–TD3) featured with donor–π–acceptor architecture are synthesized and applied to dye-sensitized solar cells (DSSCs). In these sensitizers, an alkyl oligothiophene π-spacer is used to link the 2-cyanoacrylic acid acceptor with varied arylamines donors, i.e. carbazole (TD1),...
Saved in:
Published in: | Journal of power sources 2020-03, Vol.451, p.227776, Article 227776 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-f0df48fca29a8c5c69ed73ba452c5e997ce291ca9ca46af637221fc448165da23 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-f0df48fca29a8c5c69ed73ba452c5e997ce291ca9ca46af637221fc448165da23 |
container_end_page | |
container_issue | |
container_start_page | 227776 |
container_title | Journal of power sources |
container_volume | 451 |
creator | Wu, Zhi-Sheng Song, Xin-Chao Liu, Ya-Dong Zhang, Jie Wang, Hu-Sheng Chen, Zheng-Jian Liu, Shuang Weng, Qiang An, Zhong-Wei Guo, Wang-Jun |
description | Three new organic dyes (TD1–TD3) featured with donor–π–acceptor architecture are synthesized and applied to dye-sensitized solar cells (DSSCs). In these sensitizers, an alkyl oligothiophene π-spacer is used to link the 2-cyanoacrylic acid acceptor with varied arylamines donors, i.e. carbazole (TD1), phenothiazine (TD2) or triphenylamine (TD3). The effects of different donor units on the photophysical, electrochemical, and photovoltaic properties of sensitizers are investigated in detail. They all show intensive UV–vis absorption around 400 nm with rod-like molecular structures. The co-sensitizations of TD1–TD3 with ruthenium complex N719 are further evaluated. Consequently, the co-sensitized DSSCs demonstrate superior photovoltaic performances with power conversion efficiencies (PCEs) ranging from 7.60% to 8.02% in relation to the cell with N719 (PCE = 7.29%) alone, which is mainly ascribed to the higher short-circuit photocurrents (Jsc) in combination with larger open-circuit voltages (Voc). Moreover, the origins of these improvements are examined by incident photon to current efficiency (IPCE) spectra and electrochemical impedance spectroscopy (EIS) investigations. The Jsc is improved because TD1–TD3 could compensate for the photocurrent loss induced by I−/I3−; whereas, the Voc is enhanced owing to the fact that the electron recombination process is retarded upon co-sensitization.
[Display omitted]
•Three new organic dyes (TD1–TD3) with varied arylamine donors were synthesized.•The effects of different donors on the photovoltaic properties of DSSCs were studied.•The co-sensitizations of TD1–TD3 with ruthenium complex N719 were studied as well.•The co-sensitization DSSCs yielded PCEs up to 8.02%, exceeding that of N719 (7.29%). |
doi_str_mv | 10.1016/j.jpowsour.2020.227776 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jpowsour_2020_227776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775320300793</els_id><sourcerecordid>S0378775320300793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-f0df48fca29a8c5c69ed73ba452c5e997ce291ca9ca46af637221fc448165da23</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwC8g_kGA7Dyc7UAUUqSobWFtmPKaOkriy05ay5MtJVWDLahZ37tHMIeSas5QzXt40abP2u-g3IRVMsFQIKWV5Qia8klkiZFGckgnLZJVIWWTn5CLGhjHGuWQT8rXEHfXhXfcOqNljpDs3rOhWB4eG6rBvded6pMb3PkSqI0VrEQa3RQo-idhHN7hPHDPrAw2bYYW923Rj2K1b_KBLyWvq-gOb_m0bGn2rAwVs23hJzqxuI179zCl5fbh_mc2TxfPj0-xukUDGxZBYZmxeWdCi1hUUUNZoZPam80JAgXUtAUXNQdeg81LbMpNCcAt5XvGyMFpkU1IeuRB8jAGtWgfXjS8qztTBpGrUr0l1MKmOJsfi7bGI43Vbh0FFcNgDGhdGFcp49x_iG2GahDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Wu, Zhi-Sheng ; Song, Xin-Chao ; Liu, Ya-Dong ; Zhang, Jie ; Wang, Hu-Sheng ; Chen, Zheng-Jian ; Liu, Shuang ; Weng, Qiang ; An, Zhong-Wei ; Guo, Wang-Jun</creator><creatorcontrib>Wu, Zhi-Sheng ; Song, Xin-Chao ; Liu, Ya-Dong ; Zhang, Jie ; Wang, Hu-Sheng ; Chen, Zheng-Jian ; Liu, Shuang ; Weng, Qiang ; An, Zhong-Wei ; Guo, Wang-Jun</creatorcontrib><description>Three new organic dyes (TD1–TD3) featured with donor–π–acceptor architecture are synthesized and applied to dye-sensitized solar cells (DSSCs). In these sensitizers, an alkyl oligothiophene π-spacer is used to link the 2-cyanoacrylic acid acceptor with varied arylamines donors, i.e. carbazole (TD1), phenothiazine (TD2) or triphenylamine (TD3). The effects of different donor units on the photophysical, electrochemical, and photovoltaic properties of sensitizers are investigated in detail. They all show intensive UV–vis absorption around 400 nm with rod-like molecular structures. The co-sensitizations of TD1–TD3 with ruthenium complex N719 are further evaluated. Consequently, the co-sensitized DSSCs demonstrate superior photovoltaic performances with power conversion efficiencies (PCEs) ranging from 7.60% to 8.02% in relation to the cell with N719 (PCE = 7.29%) alone, which is mainly ascribed to the higher short-circuit photocurrents (Jsc) in combination with larger open-circuit voltages (Voc). Moreover, the origins of these improvements are examined by incident photon to current efficiency (IPCE) spectra and electrochemical impedance spectroscopy (EIS) investigations. The Jsc is improved because TD1–TD3 could compensate for the photocurrent loss induced by I−/I3−; whereas, the Voc is enhanced owing to the fact that the electron recombination process is retarded upon co-sensitization.
[Display omitted]
•Three new organic dyes (TD1–TD3) with varied arylamine donors were synthesized.•The effects of different donors on the photovoltaic properties of DSSCs were studied.•The co-sensitizations of TD1–TD3 with ruthenium complex N719 were studied as well.•The co-sensitization DSSCs yielded PCEs up to 8.02%, exceeding that of N719 (7.29%).</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2020.227776</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Co-sensitization ; Dye-sensitized solar cells ; Electron donor ; N719 ; Organic dyes</subject><ispartof>Journal of power sources, 2020-03, Vol.451, p.227776, Article 227776</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-f0df48fca29a8c5c69ed73ba452c5e997ce291ca9ca46af637221fc448165da23</citedby><cites>FETCH-LOGICAL-c312t-f0df48fca29a8c5c69ed73ba452c5e997ce291ca9ca46af637221fc448165da23</cites><orcidid>0000-0002-7860-2840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Zhi-Sheng</creatorcontrib><creatorcontrib>Song, Xin-Chao</creatorcontrib><creatorcontrib>Liu, Ya-Dong</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Hu-Sheng</creatorcontrib><creatorcontrib>Chen, Zheng-Jian</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Weng, Qiang</creatorcontrib><creatorcontrib>An, Zhong-Wei</creatorcontrib><creatorcontrib>Guo, Wang-Jun</creatorcontrib><title>New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells</title><title>Journal of power sources</title><description>Three new organic dyes (TD1–TD3) featured with donor–π–acceptor architecture are synthesized and applied to dye-sensitized solar cells (DSSCs). In these sensitizers, an alkyl oligothiophene π-spacer is used to link the 2-cyanoacrylic acid acceptor with varied arylamines donors, i.e. carbazole (TD1), phenothiazine (TD2) or triphenylamine (TD3). The effects of different donor units on the photophysical, electrochemical, and photovoltaic properties of sensitizers are investigated in detail. They all show intensive UV–vis absorption around 400 nm with rod-like molecular structures. The co-sensitizations of TD1–TD3 with ruthenium complex N719 are further evaluated. Consequently, the co-sensitized DSSCs demonstrate superior photovoltaic performances with power conversion efficiencies (PCEs) ranging from 7.60% to 8.02% in relation to the cell with N719 (PCE = 7.29%) alone, which is mainly ascribed to the higher short-circuit photocurrents (Jsc) in combination with larger open-circuit voltages (Voc). Moreover, the origins of these improvements are examined by incident photon to current efficiency (IPCE) spectra and electrochemical impedance spectroscopy (EIS) investigations. The Jsc is improved because TD1–TD3 could compensate for the photocurrent loss induced by I−/I3−; whereas, the Voc is enhanced owing to the fact that the electron recombination process is retarded upon co-sensitization.
[Display omitted]
•Three new organic dyes (TD1–TD3) with varied arylamine donors were synthesized.•The effects of different donors on the photovoltaic properties of DSSCs were studied.•The co-sensitizations of TD1–TD3 with ruthenium complex N719 were studied as well.•The co-sensitization DSSCs yielded PCEs up to 8.02%, exceeding that of N719 (7.29%).</description><subject>Co-sensitization</subject><subject>Dye-sensitized solar cells</subject><subject>Electron donor</subject><subject>N719</subject><subject>Organic dyes</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwC8g_kGA7Dyc7UAUUqSobWFtmPKaOkriy05ay5MtJVWDLahZ37tHMIeSas5QzXt40abP2u-g3IRVMsFQIKWV5Qia8klkiZFGckgnLZJVIWWTn5CLGhjHGuWQT8rXEHfXhXfcOqNljpDs3rOhWB4eG6rBvded6pMb3PkSqI0VrEQa3RQo-idhHN7hPHDPrAw2bYYW923Rj2K1b_KBLyWvq-gOb_m0bGn2rAwVs23hJzqxuI179zCl5fbh_mc2TxfPj0-xukUDGxZBYZmxeWdCi1hUUUNZoZPam80JAgXUtAUXNQdeg81LbMpNCcAt5XvGyMFpkU1IeuRB8jAGtWgfXjS8qztTBpGrUr0l1MKmOJsfi7bGI43Vbh0FFcNgDGhdGFcp49x_iG2GahDE</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wu, Zhi-Sheng</creator><creator>Song, Xin-Chao</creator><creator>Liu, Ya-Dong</creator><creator>Zhang, Jie</creator><creator>Wang, Hu-Sheng</creator><creator>Chen, Zheng-Jian</creator><creator>Liu, Shuang</creator><creator>Weng, Qiang</creator><creator>An, Zhong-Wei</creator><creator>Guo, Wang-Jun</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7860-2840</orcidid></search><sort><creationdate>20200301</creationdate><title>New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells</title><author>Wu, Zhi-Sheng ; Song, Xin-Chao ; Liu, Ya-Dong ; Zhang, Jie ; Wang, Hu-Sheng ; Chen, Zheng-Jian ; Liu, Shuang ; Weng, Qiang ; An, Zhong-Wei ; Guo, Wang-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-f0df48fca29a8c5c69ed73ba452c5e997ce291ca9ca46af637221fc448165da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Co-sensitization</topic><topic>Dye-sensitized solar cells</topic><topic>Electron donor</topic><topic>N719</topic><topic>Organic dyes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhi-Sheng</creatorcontrib><creatorcontrib>Song, Xin-Chao</creatorcontrib><creatorcontrib>Liu, Ya-Dong</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Hu-Sheng</creatorcontrib><creatorcontrib>Chen, Zheng-Jian</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Weng, Qiang</creatorcontrib><creatorcontrib>An, Zhong-Wei</creatorcontrib><creatorcontrib>Guo, Wang-Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhi-Sheng</au><au>Song, Xin-Chao</au><au>Liu, Ya-Dong</au><au>Zhang, Jie</au><au>Wang, Hu-Sheng</au><au>Chen, Zheng-Jian</au><au>Liu, Shuang</au><au>Weng, Qiang</au><au>An, Zhong-Wei</au><au>Guo, Wang-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells</atitle><jtitle>Journal of power sources</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>451</volume><spage>227776</spage><pages>227776-</pages><artnum>227776</artnum><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>Three new organic dyes (TD1–TD3) featured with donor–π–acceptor architecture are synthesized and applied to dye-sensitized solar cells (DSSCs). In these sensitizers, an alkyl oligothiophene π-spacer is used to link the 2-cyanoacrylic acid acceptor with varied arylamines donors, i.e. carbazole (TD1), phenothiazine (TD2) or triphenylamine (TD3). The effects of different donor units on the photophysical, electrochemical, and photovoltaic properties of sensitizers are investigated in detail. They all show intensive UV–vis absorption around 400 nm with rod-like molecular structures. The co-sensitizations of TD1–TD3 with ruthenium complex N719 are further evaluated. Consequently, the co-sensitized DSSCs demonstrate superior photovoltaic performances with power conversion efficiencies (PCEs) ranging from 7.60% to 8.02% in relation to the cell with N719 (PCE = 7.29%) alone, which is mainly ascribed to the higher short-circuit photocurrents (Jsc) in combination with larger open-circuit voltages (Voc). Moreover, the origins of these improvements are examined by incident photon to current efficiency (IPCE) spectra and electrochemical impedance spectroscopy (EIS) investigations. The Jsc is improved because TD1–TD3 could compensate for the photocurrent loss induced by I−/I3−; whereas, the Voc is enhanced owing to the fact that the electron recombination process is retarded upon co-sensitization.
[Display omitted]
•Three new organic dyes (TD1–TD3) with varied arylamine donors were synthesized.•The effects of different donors on the photovoltaic properties of DSSCs were studied.•The co-sensitizations of TD1–TD3 with ruthenium complex N719 were studied as well.•The co-sensitization DSSCs yielded PCEs up to 8.02%, exceeding that of N719 (7.29%).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2020.227776</doi><orcidid>https://orcid.org/0000-0002-7860-2840</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2020-03, Vol.451, p.227776, Article 227776 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jpowsour_2020_227776 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Co-sensitization Dye-sensitized solar cells Electron donor N719 Organic dyes |
title | New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20organic%20dyes%20with%20varied%20arylamine%20donors%20as%20effective%20co-sensitizers%20for%20ruthenium%20complex%20N719%20in%20dye%20sensitized%20solar%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Wu,%20Zhi-Sheng&rft.date=2020-03-01&rft.volume=451&rft.spage=227776&rft.pages=227776-&rft.artnum=227776&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2020.227776&rft_dat=%3Celsevier_cross%3ES0378775320300793%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-f0df48fca29a8c5c69ed73ba452c5e997ce291ca9ca46af637221fc448165da23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |