Loading…
Porous silicon covalently-grafted with chloro-styrenic carbons for fast Li+ diffusion and durable lithium-storage capability
Silicon-based anode materials have critical issues such as drastic volume changes, huge stress generation, and the thickening of solid‒electrolyte interphase layer. Thus, a new strategy for improving silicon interface is necessary for significantly enhanced Li+ ion transportation and structural stab...
Saved in:
Published in: | Journal of power sources 2023-01, Vol.554, p.232326, Article 232326 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-f8d72c6dc10c01720ddd733b6d0e97c67087f66b1443c28e805ea2e2a8a76863 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-f8d72c6dc10c01720ddd733b6d0e97c67087f66b1443c28e805ea2e2a8a76863 |
container_end_page | |
container_issue | |
container_start_page | 232326 |
container_title | Journal of power sources |
container_volume | 554 |
creator | Tran, Minh Xuan Nguyen, Thuy-An Lee, Joong Kee Lee, Sang-Wha |
description | Silicon-based anode materials have critical issues such as drastic volume changes, huge stress generation, and the thickening of solid‒electrolyte interphase layer. Thus, a new strategy for improving silicon interface is necessary for significantly enhanced Li+ ion transportation and structural stability during prolonged cycling, while simultaneously reducing severe side reactions. Herein, we prepared porous silicon particles covalently linked with styrene-based polymers (polystyrene (PS) and poly(4-chlorostyrene) (PCS)) via a facile non-atmospheric thermolytic process at a low-temperature (≤400 °C), in which the decomposed styrenic carbon fragments are covalently grafted on the silicon surface via Si–O–C and Si–C species. Notably, PCS-grafted porous silicon exhibited the significantly enhanced electrochemical performance (i.e., a high rate capability of 1270 mAh g−1 at 20 A g−1, 90.7% of initial capacity at 4 A g−1, and a reversible capacity of 1725 mAh g−1 after 200 cycles), because of the dual covalent linkages of Si–C and Si–O–C species in chloro-styrenic carbons that provide durable lithium storage capability and fast Li+ transportation. Specifically, the Si–C linkage enforced the formation of a durable interlayer that protects the Si active material from reactive electrolytes, and the polarized Si–O–C linkage facilitates the rapid transport of Li+ ions.
[Display omitted]
•Poly(4-chlorostyrene) (PCS) covalently grafted porous silicon as anode material.•Si–O–C/Si–C linkages bestowed polarized capacitance and strong mechanical strength.•PCS matrices provide lithium reservoirs and hopping sites for fast Li + ion transport.•High rate capability of 1270 mAh g−1@20 A g−1 and 90.7% recovery at 4 A g−1. |
doi_str_mv | 10.1016/j.jpowsour.2022.232326 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jpowsour_2022_232326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775322013039</els_id><sourcerecordid>S0378775322013039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-f8d72c6dc10c01720ddd733b6d0e97c67087f66b1443c28e805ea2e2a8a76863</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWC-vINnLjLl0krhTijco6KL7kMmlzTCdlCTTMuDDm1Jdy1n8m_P95_ABcIdRjRFmD13d7cIhhTHWBBFSE1qGnYEZFpxWhDfNOZghykXFeUMvwVVKHUIIY45m4PsrxDAmmHzvdRigDnvV2yH3U7WOymVr4MHnDdSbvixWKU_RDl5DrWIbhgRdiNCplOHS30PjnRuTLzVqMNCMUbW9hX3h_bgtbIhqbQu6U205l6cbcOFUn-ztb16D1evLavFeLT_fPhbPy0pTTHLlhOFEM6Mx0ghzgowxnNKWGWQfuWYcCe4Ya_F8TjURVqDGKmKJEoozweg1YKdaHUNK0Tq5i36r4iQxkkeFspN_CuVRoTwpLODTCbTlub23USbt7aCt8dHqLE3w_1X8ALwtgYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Porous silicon covalently-grafted with chloro-styrenic carbons for fast Li+ diffusion and durable lithium-storage capability</title><source>ScienceDirect Freedom Collection</source><creator>Tran, Minh Xuan ; Nguyen, Thuy-An ; Lee, Joong Kee ; Lee, Sang-Wha</creator><creatorcontrib>Tran, Minh Xuan ; Nguyen, Thuy-An ; Lee, Joong Kee ; Lee, Sang-Wha</creatorcontrib><description>Silicon-based anode materials have critical issues such as drastic volume changes, huge stress generation, and the thickening of solid‒electrolyte interphase layer. Thus, a new strategy for improving silicon interface is necessary for significantly enhanced Li+ ion transportation and structural stability during prolonged cycling, while simultaneously reducing severe side reactions. Herein, we prepared porous silicon particles covalently linked with styrene-based polymers (polystyrene (PS) and poly(4-chlorostyrene) (PCS)) via a facile non-atmospheric thermolytic process at a low-temperature (≤400 °C), in which the decomposed styrenic carbon fragments are covalently grafted on the silicon surface via Si–O–C and Si–C species. Notably, PCS-grafted porous silicon exhibited the significantly enhanced electrochemical performance (i.e., a high rate capability of 1270 mAh g−1 at 20 A g−1, 90.7% of initial capacity at 4 A g−1, and a reversible capacity of 1725 mAh g−1 after 200 cycles), because of the dual covalent linkages of Si–C and Si–O–C species in chloro-styrenic carbons that provide durable lithium storage capability and fast Li+ transportation. Specifically, the Si–C linkage enforced the formation of a durable interlayer that protects the Si active material from reactive electrolytes, and the polarized Si–O–C linkage facilitates the rapid transport of Li+ ions.
[Display omitted]
•Poly(4-chlorostyrene) (PCS) covalently grafted porous silicon as anode material.•Si–O–C/Si–C linkages bestowed polarized capacitance and strong mechanical strength.•PCS matrices provide lithium reservoirs and hopping sites for fast Li + ion transport.•High rate capability of 1270 mAh g−1@20 A g−1 and 90.7% recovery at 4 A g−1.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2022.232326</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Covalent linkage ; Lithium-ion battery ; Poly(4-chlorostyrene) ; Porous silicon ; Thermolytic grafting</subject><ispartof>Journal of power sources, 2023-01, Vol.554, p.232326, Article 232326</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-f8d72c6dc10c01720ddd733b6d0e97c67087f66b1443c28e805ea2e2a8a76863</citedby><cites>FETCH-LOGICAL-c312t-f8d72c6dc10c01720ddd733b6d0e97c67087f66b1443c28e805ea2e2a8a76863</cites><orcidid>0000-0002-4655-9761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Tran, Minh Xuan</creatorcontrib><creatorcontrib>Nguyen, Thuy-An</creatorcontrib><creatorcontrib>Lee, Joong Kee</creatorcontrib><creatorcontrib>Lee, Sang-Wha</creatorcontrib><title>Porous silicon covalently-grafted with chloro-styrenic carbons for fast Li+ diffusion and durable lithium-storage capability</title><title>Journal of power sources</title><description>Silicon-based anode materials have critical issues such as drastic volume changes, huge stress generation, and the thickening of solid‒electrolyte interphase layer. Thus, a new strategy for improving silicon interface is necessary for significantly enhanced Li+ ion transportation and structural stability during prolonged cycling, while simultaneously reducing severe side reactions. Herein, we prepared porous silicon particles covalently linked with styrene-based polymers (polystyrene (PS) and poly(4-chlorostyrene) (PCS)) via a facile non-atmospheric thermolytic process at a low-temperature (≤400 °C), in which the decomposed styrenic carbon fragments are covalently grafted on the silicon surface via Si–O–C and Si–C species. Notably, PCS-grafted porous silicon exhibited the significantly enhanced electrochemical performance (i.e., a high rate capability of 1270 mAh g−1 at 20 A g−1, 90.7% of initial capacity at 4 A g−1, and a reversible capacity of 1725 mAh g−1 after 200 cycles), because of the dual covalent linkages of Si–C and Si–O–C species in chloro-styrenic carbons that provide durable lithium storage capability and fast Li+ transportation. Specifically, the Si–C linkage enforced the formation of a durable interlayer that protects the Si active material from reactive electrolytes, and the polarized Si–O–C linkage facilitates the rapid transport of Li+ ions.
[Display omitted]
•Poly(4-chlorostyrene) (PCS) covalently grafted porous silicon as anode material.•Si–O–C/Si–C linkages bestowed polarized capacitance and strong mechanical strength.•PCS matrices provide lithium reservoirs and hopping sites for fast Li + ion transport.•High rate capability of 1270 mAh g−1@20 A g−1 and 90.7% recovery at 4 A g−1.</description><subject>Covalent linkage</subject><subject>Lithium-ion battery</subject><subject>Poly(4-chlorostyrene)</subject><subject>Porous silicon</subject><subject>Thermolytic grafting</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWC-vINnLjLl0krhTijco6KL7kMmlzTCdlCTTMuDDm1Jdy1n8m_P95_ABcIdRjRFmD13d7cIhhTHWBBFSE1qGnYEZFpxWhDfNOZghykXFeUMvwVVKHUIIY45m4PsrxDAmmHzvdRigDnvV2yH3U7WOymVr4MHnDdSbvixWKU_RDl5DrWIbhgRdiNCplOHS30PjnRuTLzVqMNCMUbW9hX3h_bgtbIhqbQu6U205l6cbcOFUn-ztb16D1evLavFeLT_fPhbPy0pTTHLlhOFEM6Mx0ghzgowxnNKWGWQfuWYcCe4Ya_F8TjURVqDGKmKJEoozweg1YKdaHUNK0Tq5i36r4iQxkkeFspN_CuVRoTwpLODTCbTlub23USbt7aCt8dHqLE3w_1X8ALwtgYI</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Tran, Minh Xuan</creator><creator>Nguyen, Thuy-An</creator><creator>Lee, Joong Kee</creator><creator>Lee, Sang-Wha</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4655-9761</orcidid></search><sort><creationdate>20230115</creationdate><title>Porous silicon covalently-grafted with chloro-styrenic carbons for fast Li+ diffusion and durable lithium-storage capability</title><author>Tran, Minh Xuan ; Nguyen, Thuy-An ; Lee, Joong Kee ; Lee, Sang-Wha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-f8d72c6dc10c01720ddd733b6d0e97c67087f66b1443c28e805ea2e2a8a76863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Covalent linkage</topic><topic>Lithium-ion battery</topic><topic>Poly(4-chlorostyrene)</topic><topic>Porous silicon</topic><topic>Thermolytic grafting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Minh Xuan</creatorcontrib><creatorcontrib>Nguyen, Thuy-An</creatorcontrib><creatorcontrib>Lee, Joong Kee</creatorcontrib><creatorcontrib>Lee, Sang-Wha</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Minh Xuan</au><au>Nguyen, Thuy-An</au><au>Lee, Joong Kee</au><au>Lee, Sang-Wha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous silicon covalently-grafted with chloro-styrenic carbons for fast Li+ diffusion and durable lithium-storage capability</atitle><jtitle>Journal of power sources</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>554</volume><spage>232326</spage><pages>232326-</pages><artnum>232326</artnum><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>Silicon-based anode materials have critical issues such as drastic volume changes, huge stress generation, and the thickening of solid‒electrolyte interphase layer. Thus, a new strategy for improving silicon interface is necessary for significantly enhanced Li+ ion transportation and structural stability during prolonged cycling, while simultaneously reducing severe side reactions. Herein, we prepared porous silicon particles covalently linked with styrene-based polymers (polystyrene (PS) and poly(4-chlorostyrene) (PCS)) via a facile non-atmospheric thermolytic process at a low-temperature (≤400 °C), in which the decomposed styrenic carbon fragments are covalently grafted on the silicon surface via Si–O–C and Si–C species. Notably, PCS-grafted porous silicon exhibited the significantly enhanced electrochemical performance (i.e., a high rate capability of 1270 mAh g−1 at 20 A g−1, 90.7% of initial capacity at 4 A g−1, and a reversible capacity of 1725 mAh g−1 after 200 cycles), because of the dual covalent linkages of Si–C and Si–O–C species in chloro-styrenic carbons that provide durable lithium storage capability and fast Li+ transportation. Specifically, the Si–C linkage enforced the formation of a durable interlayer that protects the Si active material from reactive electrolytes, and the polarized Si–O–C linkage facilitates the rapid transport of Li+ ions.
[Display omitted]
•Poly(4-chlorostyrene) (PCS) covalently grafted porous silicon as anode material.•Si–O–C/Si–C linkages bestowed polarized capacitance and strong mechanical strength.•PCS matrices provide lithium reservoirs and hopping sites for fast Li + ion transport.•High rate capability of 1270 mAh g−1@20 A g−1 and 90.7% recovery at 4 A g−1.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2022.232326</doi><orcidid>https://orcid.org/0000-0002-4655-9761</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2023-01, Vol.554, p.232326, Article 232326 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jpowsour_2022_232326 |
source | ScienceDirect Freedom Collection |
subjects | Covalent linkage Lithium-ion battery Poly(4-chlorostyrene) Porous silicon Thermolytic grafting |
title | Porous silicon covalently-grafted with chloro-styrenic carbons for fast Li+ diffusion and durable lithium-storage capability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20silicon%20covalently-grafted%20with%20chloro-styrenic%20carbons%20for%20fast%20Li+%20diffusion%20and%20durable%20lithium-storage%20capability&rft.jtitle=Journal%20of%20power%20sources&rft.au=Tran,%20Minh%20Xuan&rft.date=2023-01-15&rft.volume=554&rft.spage=232326&rft.pages=232326-&rft.artnum=232326&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2022.232326&rft_dat=%3Celsevier_cross%3ES0378775322013039%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-f8d72c6dc10c01720ddd733b6d0e97c67087f66b1443c28e805ea2e2a8a76863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |