Loading…
Chemical blowing agents for the fabrication of nitrogen and oxygen co-doped carbon nanofibers: Structural and supercapacitive study
Here, two kinds of chemical blowing agents (BAs), specifically, oxy-bis (benzene sulfonyl) hydrazide (OBSH), and azodicarbonamide (ADC) have been explored in the fabrication of carbon nanofibers for potential usage as the electrode materials in supercapacitors (SCs). The BAs are not only used as por...
Saved in:
Published in: | Journal of power sources 2025-01, Vol.626, p.235756, Article 235756 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here, two kinds of chemical blowing agents (BAs), specifically, oxy-bis (benzene sulfonyl) hydrazide (OBSH), and azodicarbonamide (ADC) have been explored in the fabrication of carbon nanofibers for potential usage as the electrode materials in supercapacitors (SCs). The BAs are not only used as poring agents but also as heteroatom dopants. The type and the amount of BAs are significant to obtain a good porous carbon nanofiber structure and a low amount of usage provided a better nanostructure including a larger surface area (492.5 m2/g), a better total volume (0.216 cm3/g), higher level of structural disorder and defects (ID/IG, 1.02), and higher heteroatom content (5.26 at% N and 10.38 at% O) for C/OBSH-10 nanofiber. The symmetrical SC composed of C/OBSH-10 nanofiber electrode offers a specific energy of 6.2 Wh/kg at a specific power of 300 W/kg. Moreover, the cycling ability is superior (94.6 %) after 10,000 charge-discharge test and this work can be a strategy to obtain other porous carbon-based materials for energy storage applications.
[Display omitted]
•Chemical blowing agent (BA) provided a higher surface area (492.5 m2/g).•A higher heteroatom doping (5.26 at% N and 10.38 at% O) was obtained.•A good specific energy of 6.2 Wh/kg at 300 W/kg was achieved. |
---|---|
ISSN: | 0378-7753 |
DOI: | 10.1016/j.jpowsour.2024.235756 |