Loading…
Identification of block-oriented nonlinear systems using orthonormal bases
In this paper, new noniterative algorithms for the identification of (multivariable) block-oriented nonlinear models consisting of the interconnection of linear time invariant systems and static nonlinearities are presented. The proposed algorithms are numerically robust, since they are based only o...
Saved in:
Published in: | Journal of process control 2004-09, Vol.14 (6), p.685-697 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, new noniterative algorithms for the identification of (multivariable)
block-oriented nonlinear models consisting of the interconnection of linear time invariant systems and static nonlinearities are presented. The proposed algorithms are numerically robust, since they are based only on least squares estimation and singular value decomposition. Two different block-oriented nonlinear models are considered in this paper, viz., the Hammerstein model, and the Wiener model. For the Hammerstein model, the proposed algorithm provides consistent estimates even in the presence of colored output noise, under weak assumptions on the persistency of excitation of the inputs. For the Wiener model, consistency of the estimates can only be guaranteed in the noise free case. Key in the derivation of the results is the use of basis functions for the representation of the linear and nonlinear parts of the models. The performance of the proposed identification algorithms is illustrated through simulation examples of two benchmark problems drawn from the process control literature, viz., a binary distillation column and a pH neutralization process. |
---|---|
ISSN: | 0959-1524 1873-2771 |
DOI: | 10.1016/j.jprocont.2003.09.010 |