Loading…
Fault detection and diagnosis in process data using one-class support vector machines
In this paper, a new approach for fault detection and diagnosis based on One-Class Support Vector Machines (1-class SVM) has been proposed. The approach is based on a non-linear distance metric measured in a feature space. Just as in principal components analysis (PCA) and dynamic principal componen...
Saved in:
Published in: | Journal of process control 2009-12, Vol.19 (10), p.1627-1639 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a new approach for fault detection and diagnosis based on One-Class Support Vector Machines (1-class SVM) has been proposed. The approach is based on a non-linear distance metric measured in a feature space. Just as in principal components analysis (PCA) and dynamic principal components analysis (DPCA), appropriate distance metrics and thresholds have been developed for fault detection. Fault diagnosis is then carried out using the SVM-recursive feature elimination (SVM-RFE) feature selection method. The efficacy of this method is demonstrated by applying it on the benchmark Tennessee Eastman problem and on an industrial real-time Semiconductor etch process dataset. The algorithm has been compared with conventional techniques such as PCA and DPCA in terms of performance measures such as false alarm rates, detection latency and fault detection rates. It is shown that the proposed algorithm outperformed PCA and DPCA both in terms of detection and diagnosis of faults. |
---|---|
ISSN: | 0959-1524 1873-2771 |
DOI: | 10.1016/j.jprocont.2009.07.011 |