Loading…

Phylovenomics of Daboia russelii across the Indian subcontinent. Bioactivities and comparative in vivo neutralization and in vitro third-generation antivenomics of antivenoms against venoms from India, Bangladesh and Sri Lanka

Russell's viper (Daboia russelii) is, together with Naja naja, Bungarus caeruleus and Echis carinatus, a member of the medically important ‘Big Four’ species responsible for causing a large number of morbidity and mortality cases across the Indian subcontinent. Despite the wide distribution of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of proteomics 2019-09, Vol.207, p.103443, Article 103443
Main Authors: Pla, Davinia, Sanz, Libia, Quesada-Bernat, Sarai, Villalta, Mauren, Baal, Joshua, Chowdhury, Mohammad Abdul Wahed, León, Guillermo, Gutiérrez, José M., Kuch, Ulrich, Calvete, Juan J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Russell's viper (Daboia russelii) is, together with Naja naja, Bungarus caeruleus and Echis carinatus, a member of the medically important ‘Big Four’ species responsible for causing a large number of morbidity and mortality cases across the Indian subcontinent. Despite the wide distribution of Russell's viper and the well-documented ubiquity of the phenomenon of geographic variability of intraspecific snake venom composition, Indian polyvalent antivenoms against the “Big Four” venoms are raised against venoms sourced mainly from Chennai in the southeastern Indian state of Tamil Nadu. Biochemical and venomics investigations have consistently revealed notable compositional, functional, and immunological differences among geographic variants of Russell's viper venoms across the Indian subcontinent. However, these studies, carried out by different laboratories using different protocols and involving venoms from a single geographical region, make the comparison of the different venoms difficult. To bridge this gap, we have conducted bioactivities and proteomic analyses of D. russelii venoms from the three corners of the Indian subcontinent, Pakistan, Bangladesh, and Tamil Nandu (India) and Sri Lanka, along with comparative in vivo neutralization and in vitro third-generation antivenomics of antivenoms used in India, Bangladesh and Sri Lanka. These analyses let us to propose two alternative routes of radiation for Russell's viper in the Indian subcontinent. Both radiations, towards the northeast of India and Bangladesh and towards south India and Sri Lanka, have a common origin in Pakistan, and provide a phylovenomics ground for rationalizing the geographic variability in venom composition and their distinct immunoreactivity against available antivenoms. Russell's viper (Daboia russelii), the Indian cobra (Naja naja), the common krait (Bungarus caeruleus), and the saw-scaled viper (Echis carinatus) constitute the ‘Big Four’ snake species responsible for most snakebite envenomings and deaths in the Indian subcontinent. Despite the medical relevance of Daboia russelii, and the well documented variations in the clinical manifestations of envenomings by this wide distributed species, which are doubtless functionally related to differences in venom composition of its geographic variants, antivenoms for the clinical treatment of envenomings by D. russelii across the Indian subcontinent are invariably raised using venom sourced mainly from the southeastern Indian state
ISSN:1874-3919
DOI:10.1016/j.jprot.2019.103443