Loading…

Generalized Airy theory and its region of quantitative validity

•An analytical generalization of Airy theory for TE and TM polarizations and for an arbitrary number of internal reflections.•Uses the Airy integral and its first derivative, multiplied by constants of proportionality that are independent of the scattering angle.•Improved performance compared with o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of quantitative spectroscopy & radiative transfer 2024-01, Vol.312, p.108794, Article 108794
Main Authors: Lock, James A., Können, Gunther P., Laven, Philip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-d2db92609c1e32659df052ddc0522f67d410c27b456ddf44207bf2fd9daeb82d3
cites cdi_FETCH-LOGICAL-c303t-d2db92609c1e32659df052ddc0522f67d410c27b456ddf44207bf2fd9daeb82d3
container_end_page
container_issue
container_start_page 108794
container_title Journal of quantitative spectroscopy & radiative transfer
container_volume 312
creator Lock, James A.
Können, Gunther P.
Laven, Philip
description •An analytical generalization of Airy theory for TE and TM polarizations and for an arbitrary number of internal reflections.•Uses the Airy integral and its first derivative, multiplied by constants of proportionality that are independent of the scattering angle.•Improved performance compared with original version of Airy theory. Airy theory has long proved to be a remarkably simple analytical model that describes the various features of the atmospheric rainbow. But the stringent assumptions upon which its derivation is based, prevent it from being quantitatively accurate in practical situations. We derive an analytical generalization of Airy theory for both the transverse electric and magnetic polarizations and for an arbitrary number of internal reflections. This generalized analytical model contains both the Airy integral and its first derivative, multiplied by constants of proportionality that are independent of the scattering angle. We find that, for the primary rainbow, it provides a quantitatively accurate approximation to the exact Lorenz-Mie-Debye theory of the rainbow for a much wider range of sizes of spherical water drops than does the original version of Airy theory, but still has stringent limitations for the second-order rainbow and beyond.
doi_str_mv 10.1016/j.jqsrt.2023.108794
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jqsrt_2023_108794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022407323003126</els_id><sourcerecordid>S0022407323003126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-d2db92609c1e32659df052ddc0522f67d410c27b456ddf44207bf2fd9daeb82d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKu_wEv-wNZJsh_dg0gpWoWCFz2HbGaiWequTWKh_npT69nLPBh4w_AYuxYwEyDqm37Wb2NIMwlS5c28acsTNhGZhVCVPGUTACmLEhp1zi5i7AFAKVFP2N2KBgpm478J-cKHPU_vNGaYAblPkQd68-PAR8e3X2ZIPpnkd8R3WUGf9pfszJlNpKs_Ttnrw_3L8rFYP6-elot1YRWoVKDErpU1tFaQknXVooNKIto8pasbLAVY2XRlVSO6spTQdE46bNFQN5eopkwd79owxhjI6c_gP0zYawH60ED3-reBPjTQxwbZuj1alF_beQo6Wk-DJfSBbNI4-n_9H_ItZxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Airy theory and its region of quantitative validity</title><source>Elsevier</source><creator>Lock, James A. ; Können, Gunther P. ; Laven, Philip</creator><creatorcontrib>Lock, James A. ; Können, Gunther P. ; Laven, Philip</creatorcontrib><description>•An analytical generalization of Airy theory for TE and TM polarizations and for an arbitrary number of internal reflections.•Uses the Airy integral and its first derivative, multiplied by constants of proportionality that are independent of the scattering angle.•Improved performance compared with original version of Airy theory. Airy theory has long proved to be a remarkably simple analytical model that describes the various features of the atmospheric rainbow. But the stringent assumptions upon which its derivation is based, prevent it from being quantitatively accurate in practical situations. We derive an analytical generalization of Airy theory for both the transverse electric and magnetic polarizations and for an arbitrary number of internal reflections. This generalized analytical model contains both the Airy integral and its first derivative, multiplied by constants of proportionality that are independent of the scattering angle. We find that, for the primary rainbow, it provides a quantitatively accurate approximation to the exact Lorenz-Mie-Debye theory of the rainbow for a much wider range of sizes of spherical water drops than does the original version of Airy theory, but still has stringent limitations for the second-order rainbow and beyond.</description><identifier>ISSN: 0022-4073</identifier><identifier>EISSN: 1879-1352</identifier><identifier>DOI: 10.1016/j.jqsrt.2023.108794</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Airy theory ; Analytical generalization</subject><ispartof>Journal of quantitative spectroscopy &amp; radiative transfer, 2024-01, Vol.312, p.108794, Article 108794</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-d2db92609c1e32659df052ddc0522f67d410c27b456ddf44207bf2fd9daeb82d3</citedby><cites>FETCH-LOGICAL-c303t-d2db92609c1e32659df052ddc0522f67d410c27b456ddf44207bf2fd9daeb82d3</cites><orcidid>0009-0008-7044-0067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Lock, James A.</creatorcontrib><creatorcontrib>Können, Gunther P.</creatorcontrib><creatorcontrib>Laven, Philip</creatorcontrib><title>Generalized Airy theory and its region of quantitative validity</title><title>Journal of quantitative spectroscopy &amp; radiative transfer</title><description>•An analytical generalization of Airy theory for TE and TM polarizations and for an arbitrary number of internal reflections.•Uses the Airy integral and its first derivative, multiplied by constants of proportionality that are independent of the scattering angle.•Improved performance compared with original version of Airy theory. Airy theory has long proved to be a remarkably simple analytical model that describes the various features of the atmospheric rainbow. But the stringent assumptions upon which its derivation is based, prevent it from being quantitatively accurate in practical situations. We derive an analytical generalization of Airy theory for both the transverse electric and magnetic polarizations and for an arbitrary number of internal reflections. This generalized analytical model contains both the Airy integral and its first derivative, multiplied by constants of proportionality that are independent of the scattering angle. We find that, for the primary rainbow, it provides a quantitatively accurate approximation to the exact Lorenz-Mie-Debye theory of the rainbow for a much wider range of sizes of spherical water drops than does the original version of Airy theory, but still has stringent limitations for the second-order rainbow and beyond.</description><subject>Airy theory</subject><subject>Analytical generalization</subject><issn>0022-4073</issn><issn>1879-1352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKu_wEv-wNZJsh_dg0gpWoWCFz2HbGaiWequTWKh_npT69nLPBh4w_AYuxYwEyDqm37Wb2NIMwlS5c28acsTNhGZhVCVPGUTACmLEhp1zi5i7AFAKVFP2N2KBgpm478J-cKHPU_vNGaYAblPkQd68-PAR8e3X2ZIPpnkd8R3WUGf9pfszJlNpKs_Ttnrw_3L8rFYP6-elot1YRWoVKDErpU1tFaQknXVooNKIto8pasbLAVY2XRlVSO6spTQdE46bNFQN5eopkwd79owxhjI6c_gP0zYawH60ED3-reBPjTQxwbZuj1alF_beQo6Wk-DJfSBbNI4-n_9H_ItZxU</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Lock, James A.</creator><creator>Können, Gunther P.</creator><creator>Laven, Philip</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-7044-0067</orcidid></search><sort><creationdate>202401</creationdate><title>Generalized Airy theory and its region of quantitative validity</title><author>Lock, James A. ; Können, Gunther P. ; Laven, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-d2db92609c1e32659df052ddc0522f67d410c27b456ddf44207bf2fd9daeb82d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Airy theory</topic><topic>Analytical generalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lock, James A.</creatorcontrib><creatorcontrib>Können, Gunther P.</creatorcontrib><creatorcontrib>Laven, Philip</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lock, James A.</au><au>Können, Gunther P.</au><au>Laven, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Airy theory and its region of quantitative validity</atitle><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle><date>2024-01</date><risdate>2024</risdate><volume>312</volume><spage>108794</spage><pages>108794-</pages><artnum>108794</artnum><issn>0022-4073</issn><eissn>1879-1352</eissn><abstract>•An analytical generalization of Airy theory for TE and TM polarizations and for an arbitrary number of internal reflections.•Uses the Airy integral and its first derivative, multiplied by constants of proportionality that are independent of the scattering angle.•Improved performance compared with original version of Airy theory. Airy theory has long proved to be a remarkably simple analytical model that describes the various features of the atmospheric rainbow. But the stringent assumptions upon which its derivation is based, prevent it from being quantitatively accurate in practical situations. We derive an analytical generalization of Airy theory for both the transverse electric and magnetic polarizations and for an arbitrary number of internal reflections. This generalized analytical model contains both the Airy integral and its first derivative, multiplied by constants of proportionality that are independent of the scattering angle. We find that, for the primary rainbow, it provides a quantitatively accurate approximation to the exact Lorenz-Mie-Debye theory of the rainbow for a much wider range of sizes of spherical water drops than does the original version of Airy theory, but still has stringent limitations for the second-order rainbow and beyond.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jqsrt.2023.108794</doi><orcidid>https://orcid.org/0009-0008-7044-0067</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4073
ispartof Journal of quantitative spectroscopy & radiative transfer, 2024-01, Vol.312, p.108794, Article 108794
issn 0022-4073
1879-1352
language eng
recordid cdi_crossref_primary_10_1016_j_jqsrt_2023_108794
source Elsevier
subjects Airy theory
Analytical generalization
title Generalized Airy theory and its region of quantitative validity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Airy%20theory%20and%20its%20region%20of%20quantitative%20validity&rft.jtitle=Journal%20of%20quantitative%20spectroscopy%20&%20radiative%20transfer&rft.au=Lock,%20James%20A.&rft.date=2024-01&rft.volume=312&rft.spage=108794&rft.pages=108794-&rft.artnum=108794&rft.issn=0022-4073&rft.eissn=1879-1352&rft_id=info:doi/10.1016/j.jqsrt.2023.108794&rft_dat=%3Celsevier_cross%3ES0022407323003126%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-d2db92609c1e32659df052ddc0522f67d410c27b456ddf44207bf2fd9daeb82d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true