Loading…

Accurate ab initio calculation and neural network prediction of the atomic properties of Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI

In this paper, we present an ab initio theoretical calculation of the atomic parameters, including energy levels, wavelengths, lifetimes, and transition parameters, associated with the 1s22snl and 1s22pnl (n= 2–4, l≤n−1) configurations of Be-like sequence: Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI....

Full description

Saved in:
Bibliographic Details
Published in:Journal of quantitative spectroscopy & radiative transfer 2024-09, Vol.324, p.109078, Article 109078
Main Author: Chen, Zhan-Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c253t-f4d18ef19a6a335086f629bc9e2e5bd0d9176e43edfa786eb11563fbbe80c3f33
container_end_page
container_issue
container_start_page 109078
container_title Journal of quantitative spectroscopy & radiative transfer
container_volume 324
creator Chen, Zhan-Bin
description In this paper, we present an ab initio theoretical calculation of the atomic parameters, including energy levels, wavelengths, lifetimes, and transition parameters, associated with the 1s22snl and 1s22pnl (n= 2–4, l≤n−1) configurations of Be-like sequence: Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI. Our analysis is based on the relativistic wavefunctions derived from the multi-configuration Dirac–Fock (MCDF) method, which are implemented in the relativistic atomic structure package GRASP2018. The correlations within the (principal quantum number) n= 10 complex are accounted for. The Breit interaction and quantum electrodynamical effects are added in the relativistic configuration interaction (RCI) calculation. Our results are compared with the existing data. The uncertainties of the dipole transition line strengths are assessed. In addition, we propose a feed forward neural network to predict the energy levels of Au LXXVI. This is a powerful machine learning tool capable of learning from existing data and predicting unknown data. The network is trained using theoretical energy levels of Os LXXIII, Ir LXXIV, and Pt LXXV obtained from the MCDF method. Our neural network exhibits average relative deviations of approximately 0.01% and 0.02% for trained and predicted energy levels, respectively, when compared to the MCDF results. This level of deviation suggests that our results are reasonably accurate. The data set presented in this study is useful for modeling fusion plasmas. •Energies and transition probabilities in Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI of fusion interest are calculated.•The relativistic multiconfiguration Dirac–Fock method is employed.•The neural network is employed.•The calculated data are useful for fusion research.
doi_str_mv 10.1016/j.jqsrt.2024.109078
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jqsrt_2024_109078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022407324001857</els_id><sourcerecordid>S0022407324001857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-f4d18ef19a6a335086f629bc9e2e5bd0d9176e43edfa786eb11563fbbe80c3f33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWz8AU3xI3GSBYuq4hGpUlkA6s5ynLFwaJNiuyDW_DhOyprV3Jk7dzQ6CF1TMqeEipt23n54F-aMsDROSpIXJ2hCi7xMKM_YKZoQwliSkpyfowvvW0II51RM0M9C64NTAbCqse1ssD3WaqsPWxVlh1XX4A7ixjaW8NW7d7x30Fg9ur3B4S1GQ7-zOhr9Hlyw4Adj7fFqs6mqaoYrN8rXGX4Kg4piuLs4jE11ic6M2nq4-qtT9HJ_97x8TFbrh2q5WCWaZTwkJm1oAYaWSijOM1III1hZ6xIYZHVDmpLmAlIOjVF5IaCmNBPc1DUURHPD-RTx413teu8dGLl3dqfct6REDhxlK0eOcuAojxxj6vaYgvjapwUnvbbQ6QjBgQ6y6e2_-V8FqXz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurate ab initio calculation and neural network prediction of the atomic properties of Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI</title><source>ScienceDirect Freedom Collection</source><creator>Chen, Zhan-Bin</creator><creatorcontrib>Chen, Zhan-Bin</creatorcontrib><description>In this paper, we present an ab initio theoretical calculation of the atomic parameters, including energy levels, wavelengths, lifetimes, and transition parameters, associated with the 1s22snl and 1s22pnl (n= 2–4, l≤n−1) configurations of Be-like sequence: Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI. Our analysis is based on the relativistic wavefunctions derived from the multi-configuration Dirac–Fock (MCDF) method, which are implemented in the relativistic atomic structure package GRASP2018. The correlations within the (principal quantum number) n= 10 complex are accounted for. The Breit interaction and quantum electrodynamical effects are added in the relativistic configuration interaction (RCI) calculation. Our results are compared with the existing data. The uncertainties of the dipole transition line strengths are assessed. In addition, we propose a feed forward neural network to predict the energy levels of Au LXXVI. This is a powerful machine learning tool capable of learning from existing data and predicting unknown data. The network is trained using theoretical energy levels of Os LXXIII, Ir LXXIV, and Pt LXXV obtained from the MCDF method. Our neural network exhibits average relative deviations of approximately 0.01% and 0.02% for trained and predicted energy levels, respectively, when compared to the MCDF results. This level of deviation suggests that our results are reasonably accurate. The data set presented in this study is useful for modeling fusion plasmas. •Energies and transition probabilities in Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI of fusion interest are calculated.•The relativistic multiconfiguration Dirac–Fock method is employed.•The neural network is employed.•The calculated data are useful for fusion research.</description><identifier>ISSN: 0022-4073</identifier><identifier>EISSN: 1879-1352</identifier><identifier>DOI: 10.1016/j.jqsrt.2024.109078</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Atomic structure ; Energy levels ; MCDF method ; Transition parameters</subject><ispartof>Journal of quantitative spectroscopy &amp; radiative transfer, 2024-09, Vol.324, p.109078, Article 109078</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-f4d18ef19a6a335086f629bc9e2e5bd0d9176e43edfa786eb11563fbbe80c3f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Zhan-Bin</creatorcontrib><title>Accurate ab initio calculation and neural network prediction of the atomic properties of Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI</title><title>Journal of quantitative spectroscopy &amp; radiative transfer</title><description>In this paper, we present an ab initio theoretical calculation of the atomic parameters, including energy levels, wavelengths, lifetimes, and transition parameters, associated with the 1s22snl and 1s22pnl (n= 2–4, l≤n−1) configurations of Be-like sequence: Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI. Our analysis is based on the relativistic wavefunctions derived from the multi-configuration Dirac–Fock (MCDF) method, which are implemented in the relativistic atomic structure package GRASP2018. The correlations within the (principal quantum number) n= 10 complex are accounted for. The Breit interaction and quantum electrodynamical effects are added in the relativistic configuration interaction (RCI) calculation. Our results are compared with the existing data. The uncertainties of the dipole transition line strengths are assessed. In addition, we propose a feed forward neural network to predict the energy levels of Au LXXVI. This is a powerful machine learning tool capable of learning from existing data and predicting unknown data. The network is trained using theoretical energy levels of Os LXXIII, Ir LXXIV, and Pt LXXV obtained from the MCDF method. Our neural network exhibits average relative deviations of approximately 0.01% and 0.02% for trained and predicted energy levels, respectively, when compared to the MCDF results. This level of deviation suggests that our results are reasonably accurate. The data set presented in this study is useful for modeling fusion plasmas. •Energies and transition probabilities in Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI of fusion interest are calculated.•The relativistic multiconfiguration Dirac–Fock method is employed.•The neural network is employed.•The calculated data are useful for fusion research.</description><subject>Atomic structure</subject><subject>Energy levels</subject><subject>MCDF method</subject><subject>Transition parameters</subject><issn>0022-4073</issn><issn>1879-1352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWz8AU3xI3GSBYuq4hGpUlkA6s5ynLFwaJNiuyDW_DhOyprV3Jk7dzQ6CF1TMqeEipt23n54F-aMsDROSpIXJ2hCi7xMKM_YKZoQwliSkpyfowvvW0II51RM0M9C64NTAbCqse1ssD3WaqsPWxVlh1XX4A7ixjaW8NW7d7x30Fg9ur3B4S1GQ7-zOhr9Hlyw4Adj7fFqs6mqaoYrN8rXGX4Kg4piuLs4jE11ic6M2nq4-qtT9HJ_97x8TFbrh2q5WCWaZTwkJm1oAYaWSijOM1III1hZ6xIYZHVDmpLmAlIOjVF5IaCmNBPc1DUURHPD-RTx413teu8dGLl3dqfct6REDhxlK0eOcuAojxxj6vaYgvjapwUnvbbQ6QjBgQ6y6e2_-V8FqXz8</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Chen, Zhan-Bin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202409</creationdate><title>Accurate ab initio calculation and neural network prediction of the atomic properties of Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI</title><author>Chen, Zhan-Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-f4d18ef19a6a335086f629bc9e2e5bd0d9176e43edfa786eb11563fbbe80c3f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic structure</topic><topic>Energy levels</topic><topic>MCDF method</topic><topic>Transition parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhan-Bin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhan-Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate ab initio calculation and neural network prediction of the atomic properties of Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI</atitle><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle><date>2024-09</date><risdate>2024</risdate><volume>324</volume><spage>109078</spage><pages>109078-</pages><artnum>109078</artnum><issn>0022-4073</issn><eissn>1879-1352</eissn><abstract>In this paper, we present an ab initio theoretical calculation of the atomic parameters, including energy levels, wavelengths, lifetimes, and transition parameters, associated with the 1s22snl and 1s22pnl (n= 2–4, l≤n−1) configurations of Be-like sequence: Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI. Our analysis is based on the relativistic wavefunctions derived from the multi-configuration Dirac–Fock (MCDF) method, which are implemented in the relativistic atomic structure package GRASP2018. The correlations within the (principal quantum number) n= 10 complex are accounted for. The Breit interaction and quantum electrodynamical effects are added in the relativistic configuration interaction (RCI) calculation. Our results are compared with the existing data. The uncertainties of the dipole transition line strengths are assessed. In addition, we propose a feed forward neural network to predict the energy levels of Au LXXVI. This is a powerful machine learning tool capable of learning from existing data and predicting unknown data. The network is trained using theoretical energy levels of Os LXXIII, Ir LXXIV, and Pt LXXV obtained from the MCDF method. Our neural network exhibits average relative deviations of approximately 0.01% and 0.02% for trained and predicted energy levels, respectively, when compared to the MCDF results. This level of deviation suggests that our results are reasonably accurate. The data set presented in this study is useful for modeling fusion plasmas. •Energies and transition probabilities in Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI of fusion interest are calculated.•The relativistic multiconfiguration Dirac–Fock method is employed.•The neural network is employed.•The calculated data are useful for fusion research.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jqsrt.2024.109078</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-4073
ispartof Journal of quantitative spectroscopy & radiative transfer, 2024-09, Vol.324, p.109078, Article 109078
issn 0022-4073
1879-1352
language eng
recordid cdi_crossref_primary_10_1016_j_jqsrt_2024_109078
source ScienceDirect Freedom Collection
subjects Atomic structure
Energy levels
MCDF method
Transition parameters
title Accurate ab initio calculation and neural network prediction of the atomic properties of Os LXXIII, Ir LXXIV, Pt LXXV, and Au LXXVI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20ab%20initio%20calculation%20and%20neural%20network%20prediction%20of%20the%20atomic%20properties%20of%20Os%20LXXIII,%20Ir%20LXXIV,%20Pt%20LXXV,%20and%20Au%20LXXVI&rft.jtitle=Journal%20of%20quantitative%20spectroscopy%20&%20radiative%20transfer&rft.au=Chen,%20Zhan-Bin&rft.date=2024-09&rft.volume=324&rft.spage=109078&rft.pages=109078-&rft.artnum=109078&rft.issn=0022-4073&rft.eissn=1879-1352&rft_id=info:doi/10.1016/j.jqsrt.2024.109078&rft_dat=%3Celsevier_cross%3ES0022407324001857%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c253t-f4d18ef19a6a335086f629bc9e2e5bd0d9176e43edfa786eb11563fbbe80c3f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true