Loading…
Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket
In response to the escalating challenges of global inflation, particularly in developing countries like Brazil, this study combines web scraping and machine learning to analyze inflation dynamics within the retail sector. By systematically real-time pricing and product data from a sponsor company an...
Saved in:
Published in: | Journal of retailing and consumer services 2024-07, Vol.79, p.103875, Article 103875 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-7f8329d832b0bc376dbe3ed5c9a375cd4ed163c341db3bd7e499ba12046754a53 |
container_end_page | |
container_issue | |
container_start_page | 103875 |
container_title | Journal of retailing and consumer services |
container_volume | 79 |
creator | Muñoz-Villamizar, Andrés Piatti, Matias Mejía-Argueta, Christopher Pirabe, Luis Felipe Namdar, Jafar Gomez, Juan Felipe |
description | In response to the escalating challenges of global inflation, particularly in developing countries like Brazil, this study combines web scraping and machine learning to analyze inflation dynamics within the retail sector. By systematically real-time pricing and product data from a sponsor company and its four main competitors, we focus on Brazil's most consumed staple foods—beans, rice, sugar, and coffee. Our analysis reveals critical insights into how inflation impacts consumer choices and supply chain operations, highlighting the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. The findings highlight the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. Notably, we observed a 400% increase in sales volume for beans following a 50% price reduction and discovered coffee's price stability as a competitive advantage. Additionally, managerial insights emphasize the importance of diversified sourcing and strategic inventory management to mitigate the adverse effects of inflation. |
doi_str_mv | 10.1016/j.jretconser.2024.103875 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jretconser_2024_103875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969698924001711</els_id><sourcerecordid>S0969698924001711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-7f8329d832b0bc376dbe3ed5c9a375cd4ed163c341db3bd7e499ba12046754a53</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI_-AdS7NhJbG5txUtCcIGz5cemdUidyo6K4OtxKBJHLruj2ZnRahDClCwoofV1t-gijHYICeKiJCXPNBNNdYJmVDSsoEzwUzQjspZFLYU8RxcpdYSQuhJ8hvpnffAbPfqwwTlH-x770PaZGEJGeBX1l-9v8BLvtN36ALgHHcMk18HhDzA42aj3P8R-H4eswuOAxy1go5O3uB0GN8F3GC_RWav7BFe_e47e7m5f1w_F08v943r5VNhSiLFoWsFK6fIwxFjW1M4AA1dZqVlTWcfB0ZpZxqkzzLgGuJRG05Lwuqm4rtgciWOujUNKEVq1j36n46eiRE2tqU79taam1tSxtWxdHa2Q_zv4fE3WQ7DgfAQ7Kjf4_0O-Af5NfQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket</title><source>ScienceDirect Journals</source><creator>Muñoz-Villamizar, Andrés ; Piatti, Matias ; Mejía-Argueta, Christopher ; Pirabe, Luis Felipe ; Namdar, Jafar ; Gomez, Juan Felipe</creator><creatorcontrib>Muñoz-Villamizar, Andrés ; Piatti, Matias ; Mejía-Argueta, Christopher ; Pirabe, Luis Felipe ; Namdar, Jafar ; Gomez, Juan Felipe</creatorcontrib><description>In response to the escalating challenges of global inflation, particularly in developing countries like Brazil, this study combines web scraping and machine learning to analyze inflation dynamics within the retail sector. By systematically real-time pricing and product data from a sponsor company and its four main competitors, we focus on Brazil's most consumed staple foods—beans, rice, sugar, and coffee. Our analysis reveals critical insights into how inflation impacts consumer choices and supply chain operations, highlighting the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. The findings highlight the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. Notably, we observed a 400% increase in sales volume for beans following a 50% price reduction and discovered coffee's price stability as a competitive advantage. Additionally, managerial insights emphasize the importance of diversified sourcing and strategic inventory management to mitigate the adverse effects of inflation.</description><identifier>ISSN: 0969-6989</identifier><identifier>EISSN: 1873-1384</identifier><identifier>DOI: 10.1016/j.jretconser.2024.103875</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Consumer behavior ; Data mining ; Food prices ; Price elasticity ; Web scraping</subject><ispartof>Journal of retailing and consumer services, 2024-07, Vol.79, p.103875, Article 103875</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-7f8329d832b0bc376dbe3ed5c9a375cd4ed163c341db3bd7e499ba12046754a53</cites><orcidid>0000-0003-2542-0645 ; 0000-0002-4601-2459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Muñoz-Villamizar, Andrés</creatorcontrib><creatorcontrib>Piatti, Matias</creatorcontrib><creatorcontrib>Mejía-Argueta, Christopher</creatorcontrib><creatorcontrib>Pirabe, Luis Felipe</creatorcontrib><creatorcontrib>Namdar, Jafar</creatorcontrib><creatorcontrib>Gomez, Juan Felipe</creatorcontrib><title>Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket</title><title>Journal of retailing and consumer services</title><description>In response to the escalating challenges of global inflation, particularly in developing countries like Brazil, this study combines web scraping and machine learning to analyze inflation dynamics within the retail sector. By systematically real-time pricing and product data from a sponsor company and its four main competitors, we focus on Brazil's most consumed staple foods—beans, rice, sugar, and coffee. Our analysis reveals critical insights into how inflation impacts consumer choices and supply chain operations, highlighting the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. The findings highlight the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. Notably, we observed a 400% increase in sales volume for beans following a 50% price reduction and discovered coffee's price stability as a competitive advantage. Additionally, managerial insights emphasize the importance of diversified sourcing and strategic inventory management to mitigate the adverse effects of inflation.</description><subject>Consumer behavior</subject><subject>Data mining</subject><subject>Food prices</subject><subject>Price elasticity</subject><subject>Web scraping</subject><issn>0969-6989</issn><issn>1873-1384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI_-AdS7NhJbG5txUtCcIGz5cemdUidyo6K4OtxKBJHLruj2ZnRahDClCwoofV1t-gijHYICeKiJCXPNBNNdYJmVDSsoEzwUzQjspZFLYU8RxcpdYSQuhJ8hvpnffAbPfqwwTlH-x770PaZGEJGeBX1l-9v8BLvtN36ALgHHcMk18HhDzA42aj3P8R-H4eswuOAxy1go5O3uB0GN8F3GC_RWav7BFe_e47e7m5f1w_F08v943r5VNhSiLFoWsFK6fIwxFjW1M4AA1dZqVlTWcfB0ZpZxqkzzLgGuJRG05Lwuqm4rtgciWOujUNKEVq1j36n46eiRE2tqU79taam1tSxtWxdHa2Q_zv4fE3WQ7DgfAQ7Kjf4_0O-Af5NfQM</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Muñoz-Villamizar, Andrés</creator><creator>Piatti, Matias</creator><creator>Mejía-Argueta, Christopher</creator><creator>Pirabe, Luis Felipe</creator><creator>Namdar, Jafar</creator><creator>Gomez, Juan Felipe</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2542-0645</orcidid><orcidid>https://orcid.org/0000-0002-4601-2459</orcidid></search><sort><creationdate>20240701</creationdate><title>Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket</title><author>Muñoz-Villamizar, Andrés ; Piatti, Matias ; Mejía-Argueta, Christopher ; Pirabe, Luis Felipe ; Namdar, Jafar ; Gomez, Juan Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-7f8329d832b0bc376dbe3ed5c9a375cd4ed163c341db3bd7e499ba12046754a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Consumer behavior</topic><topic>Data mining</topic><topic>Food prices</topic><topic>Price elasticity</topic><topic>Web scraping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz-Villamizar, Andrés</creatorcontrib><creatorcontrib>Piatti, Matias</creatorcontrib><creatorcontrib>Mejía-Argueta, Christopher</creatorcontrib><creatorcontrib>Pirabe, Luis Felipe</creatorcontrib><creatorcontrib>Namdar, Jafar</creatorcontrib><creatorcontrib>Gomez, Juan Felipe</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of retailing and consumer services</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz-Villamizar, Andrés</au><au>Piatti, Matias</au><au>Mejía-Argueta, Christopher</au><au>Pirabe, Luis Felipe</au><au>Namdar, Jafar</au><au>Gomez, Juan Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket</atitle><jtitle>Journal of retailing and consumer services</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>79</volume><spage>103875</spage><pages>103875-</pages><artnum>103875</artnum><issn>0969-6989</issn><eissn>1873-1384</eissn><abstract>In response to the escalating challenges of global inflation, particularly in developing countries like Brazil, this study combines web scraping and machine learning to analyze inflation dynamics within the retail sector. By systematically real-time pricing and product data from a sponsor company and its four main competitors, we focus on Brazil's most consumed staple foods—beans, rice, sugar, and coffee. Our analysis reveals critical insights into how inflation impacts consumer choices and supply chain operations, highlighting the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. The findings highlight the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. Notably, we observed a 400% increase in sales volume for beans following a 50% price reduction and discovered coffee's price stability as a competitive advantage. Additionally, managerial insights emphasize the importance of diversified sourcing and strategic inventory management to mitigate the adverse effects of inflation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jretconser.2024.103875</doi><orcidid>https://orcid.org/0000-0003-2542-0645</orcidid><orcidid>https://orcid.org/0000-0002-4601-2459</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-6989 |
ispartof | Journal of retailing and consumer services, 2024-07, Vol.79, p.103875, Article 103875 |
issn | 0969-6989 1873-1384 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jretconser_2024_103875 |
source | ScienceDirect Journals |
subjects | Consumer behavior Data mining Food prices Price elasticity Web scraping |
title | Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Navigating%20retail%20inflation%20in%20Brazil:%20A%20machine%20learning%20and%20web%20scraping%20approach%20to%20the%20basic%20food%20basket&rft.jtitle=Journal%20of%20retailing%20and%20consumer%20services&rft.au=Mu%C3%B1oz-Villamizar,%20Andr%C3%A9s&rft.date=2024-07-01&rft.volume=79&rft.spage=103875&rft.pages=103875-&rft.artnum=103875&rft.issn=0969-6989&rft.eissn=1873-1384&rft_id=info:doi/10.1016/j.jretconser.2024.103875&rft_dat=%3Celsevier_cross%3ES0969698924001711%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-7f8329d832b0bc376dbe3ed5c9a375cd4ed163c341db3bd7e499ba12046754a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |