Loading…

Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket

In response to the escalating challenges of global inflation, particularly in developing countries like Brazil, this study combines web scraping and machine learning to analyze inflation dynamics within the retail sector. By systematically real-time pricing and product data from a sponsor company an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of retailing and consumer services 2024-07, Vol.79, p.103875, Article 103875
Main Authors: Muñoz-Villamizar, Andrés, Piatti, Matias, Mejía-Argueta, Christopher, Pirabe, Luis Felipe, Namdar, Jafar, Gomez, Juan Felipe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c288t-7f8329d832b0bc376dbe3ed5c9a375cd4ed163c341db3bd7e499ba12046754a53
container_end_page
container_issue
container_start_page 103875
container_title Journal of retailing and consumer services
container_volume 79
creator Muñoz-Villamizar, Andrés
Piatti, Matias
Mejía-Argueta, Christopher
Pirabe, Luis Felipe
Namdar, Jafar
Gomez, Juan Felipe
description In response to the escalating challenges of global inflation, particularly in developing countries like Brazil, this study combines web scraping and machine learning to analyze inflation dynamics within the retail sector. By systematically real-time pricing and product data from a sponsor company and its four main competitors, we focus on Brazil's most consumed staple foods—beans, rice, sugar, and coffee. Our analysis reveals critical insights into how inflation impacts consumer choices and supply chain operations, highlighting the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. The findings highlight the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. Notably, we observed a 400% increase in sales volume for beans following a 50% price reduction and discovered coffee's price stability as a competitive advantage. Additionally, managerial insights emphasize the importance of diversified sourcing and strategic inventory management to mitigate the adverse effects of inflation.
doi_str_mv 10.1016/j.jretconser.2024.103875
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jretconser_2024_103875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969698924001711</els_id><sourcerecordid>S0969698924001711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-7f8329d832b0bc376dbe3ed5c9a375cd4ed163c341db3bd7e499ba12046754a53</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI_-AdS7NhJbG5txUtCcIGz5cemdUidyo6K4OtxKBJHLruj2ZnRahDClCwoofV1t-gijHYICeKiJCXPNBNNdYJmVDSsoEzwUzQjspZFLYU8RxcpdYSQuhJ8hvpnffAbPfqwwTlH-x770PaZGEJGeBX1l-9v8BLvtN36ALgHHcMk18HhDzA42aj3P8R-H4eswuOAxy1go5O3uB0GN8F3GC_RWav7BFe_e47e7m5f1w_F08v943r5VNhSiLFoWsFK6fIwxFjW1M4AA1dZqVlTWcfB0ZpZxqkzzLgGuJRG05Lwuqm4rtgciWOujUNKEVq1j36n46eiRE2tqU79taam1tSxtWxdHa2Q_zv4fE3WQ7DgfAQ7Kjf4_0O-Af5NfQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket</title><source>ScienceDirect Journals</source><creator>Muñoz-Villamizar, Andrés ; Piatti, Matias ; Mejía-Argueta, Christopher ; Pirabe, Luis Felipe ; Namdar, Jafar ; Gomez, Juan Felipe</creator><creatorcontrib>Muñoz-Villamizar, Andrés ; Piatti, Matias ; Mejía-Argueta, Christopher ; Pirabe, Luis Felipe ; Namdar, Jafar ; Gomez, Juan Felipe</creatorcontrib><description>In response to the escalating challenges of global inflation, particularly in developing countries like Brazil, this study combines web scraping and machine learning to analyze inflation dynamics within the retail sector. By systematically real-time pricing and product data from a sponsor company and its four main competitors, we focus on Brazil's most consumed staple foods—beans, rice, sugar, and coffee. Our analysis reveals critical insights into how inflation impacts consumer choices and supply chain operations, highlighting the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. The findings highlight the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. Notably, we observed a 400% increase in sales volume for beans following a 50% price reduction and discovered coffee's price stability as a competitive advantage. Additionally, managerial insights emphasize the importance of diversified sourcing and strategic inventory management to mitigate the adverse effects of inflation.</description><identifier>ISSN: 0969-6989</identifier><identifier>EISSN: 1873-1384</identifier><identifier>DOI: 10.1016/j.jretconser.2024.103875</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Consumer behavior ; Data mining ; Food prices ; Price elasticity ; Web scraping</subject><ispartof>Journal of retailing and consumer services, 2024-07, Vol.79, p.103875, Article 103875</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-7f8329d832b0bc376dbe3ed5c9a375cd4ed163c341db3bd7e499ba12046754a53</cites><orcidid>0000-0003-2542-0645 ; 0000-0002-4601-2459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Muñoz-Villamizar, Andrés</creatorcontrib><creatorcontrib>Piatti, Matias</creatorcontrib><creatorcontrib>Mejía-Argueta, Christopher</creatorcontrib><creatorcontrib>Pirabe, Luis Felipe</creatorcontrib><creatorcontrib>Namdar, Jafar</creatorcontrib><creatorcontrib>Gomez, Juan Felipe</creatorcontrib><title>Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket</title><title>Journal of retailing and consumer services</title><description>In response to the escalating challenges of global inflation, particularly in developing countries like Brazil, this study combines web scraping and machine learning to analyze inflation dynamics within the retail sector. By systematically real-time pricing and product data from a sponsor company and its four main competitors, we focus on Brazil's most consumed staple foods—beans, rice, sugar, and coffee. Our analysis reveals critical insights into how inflation impacts consumer choices and supply chain operations, highlighting the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. The findings highlight the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. Notably, we observed a 400% increase in sales volume for beans following a 50% price reduction and discovered coffee's price stability as a competitive advantage. Additionally, managerial insights emphasize the importance of diversified sourcing and strategic inventory management to mitigate the adverse effects of inflation.</description><subject>Consumer behavior</subject><subject>Data mining</subject><subject>Food prices</subject><subject>Price elasticity</subject><subject>Web scraping</subject><issn>0969-6989</issn><issn>1873-1384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI_-AdS7NhJbG5txUtCcIGz5cemdUidyo6K4OtxKBJHLruj2ZnRahDClCwoofV1t-gijHYICeKiJCXPNBNNdYJmVDSsoEzwUzQjspZFLYU8RxcpdYSQuhJ8hvpnffAbPfqwwTlH-x770PaZGEJGeBX1l-9v8BLvtN36ALgHHcMk18HhDzA42aj3P8R-H4eswuOAxy1go5O3uB0GN8F3GC_RWav7BFe_e47e7m5f1w_F08v943r5VNhSiLFoWsFK6fIwxFjW1M4AA1dZqVlTWcfB0ZpZxqkzzLgGuJRG05Lwuqm4rtgciWOujUNKEVq1j36n46eiRE2tqU79taam1tSxtWxdHa2Q_zv4fE3WQ7DgfAQ7Kjf4_0O-Af5NfQM</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Muñoz-Villamizar, Andrés</creator><creator>Piatti, Matias</creator><creator>Mejía-Argueta, Christopher</creator><creator>Pirabe, Luis Felipe</creator><creator>Namdar, Jafar</creator><creator>Gomez, Juan Felipe</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2542-0645</orcidid><orcidid>https://orcid.org/0000-0002-4601-2459</orcidid></search><sort><creationdate>20240701</creationdate><title>Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket</title><author>Muñoz-Villamizar, Andrés ; Piatti, Matias ; Mejía-Argueta, Christopher ; Pirabe, Luis Felipe ; Namdar, Jafar ; Gomez, Juan Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-7f8329d832b0bc376dbe3ed5c9a375cd4ed163c341db3bd7e499ba12046754a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Consumer behavior</topic><topic>Data mining</topic><topic>Food prices</topic><topic>Price elasticity</topic><topic>Web scraping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz-Villamizar, Andrés</creatorcontrib><creatorcontrib>Piatti, Matias</creatorcontrib><creatorcontrib>Mejía-Argueta, Christopher</creatorcontrib><creatorcontrib>Pirabe, Luis Felipe</creatorcontrib><creatorcontrib>Namdar, Jafar</creatorcontrib><creatorcontrib>Gomez, Juan Felipe</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of retailing and consumer services</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz-Villamizar, Andrés</au><au>Piatti, Matias</au><au>Mejía-Argueta, Christopher</au><au>Pirabe, Luis Felipe</au><au>Namdar, Jafar</au><au>Gomez, Juan Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket</atitle><jtitle>Journal of retailing and consumer services</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>79</volume><spage>103875</spage><pages>103875-</pages><artnum>103875</artnum><issn>0969-6989</issn><eissn>1873-1384</eissn><abstract>In response to the escalating challenges of global inflation, particularly in developing countries like Brazil, this study combines web scraping and machine learning to analyze inflation dynamics within the retail sector. By systematically real-time pricing and product data from a sponsor company and its four main competitors, we focus on Brazil's most consumed staple foods—beans, rice, sugar, and coffee. Our analysis reveals critical insights into how inflation impacts consumer choices and supply chain operations, highlighting the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. The findings highlight the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. Notably, we observed a 400% increase in sales volume for beans following a 50% price reduction and discovered coffee's price stability as a competitive advantage. Additionally, managerial insights emphasize the importance of diversified sourcing and strategic inventory management to mitigate the adverse effects of inflation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jretconser.2024.103875</doi><orcidid>https://orcid.org/0000-0003-2542-0645</orcidid><orcidid>https://orcid.org/0000-0002-4601-2459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-6989
ispartof Journal of retailing and consumer services, 2024-07, Vol.79, p.103875, Article 103875
issn 0969-6989
1873-1384
language eng
recordid cdi_crossref_primary_10_1016_j_jretconser_2024_103875
source ScienceDirect Journals
subjects Consumer behavior
Data mining
Food prices
Price elasticity
Web scraping
title Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Navigating%20retail%20inflation%20in%20Brazil:%20A%20machine%20learning%20and%20web%20scraping%20approach%20to%20the%20basic%20food%20basket&rft.jtitle=Journal%20of%20retailing%20and%20consumer%20services&rft.au=Mu%C3%B1oz-Villamizar,%20Andr%C3%A9s&rft.date=2024-07-01&rft.volume=79&rft.spage=103875&rft.pages=103875-&rft.artnum=103875&rft.issn=0969-6989&rft.eissn=1873-1384&rft_id=info:doi/10.1016/j.jretconser.2024.103875&rft_dat=%3Celsevier_cross%3ES0969698924001711%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-7f8329d832b0bc376dbe3ed5c9a375cd4ed163c341db3bd7e499ba12046754a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true