Loading…
A regression approach for estimating the parameters of the covariance function of a stationary spatial random process
We consider the problem of estimating the parameters of the covariance function of a stationary spatial random process. In spatial statistics, there are widely used parametric forms for the covariance functions, and various methods for estimating the parameters have been proposed in the literature....
Saved in:
Published in: | Journal of statistical planning and inference 2012-08, Vol.142 (8), p.2330-2344 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the problem of estimating the parameters of the covariance function of a stationary spatial random process. In spatial statistics, there are widely used parametric forms for the covariance functions, and various methods for estimating the parameters have been proposed in the literature. We develop a method for estimating the parameters of the covariance function that is based on a regression approach. Our method utilizes pairs of observations whose distances are closest to a value h>0 which is chosen in a way that the estimated correlation at distance h is a predetermined value. We demonstrate the effectiveness of our procedure by simulation studies and an application to a water pH data set. Simulation studies show that our method outperforms all well-known least squares-based approaches to the variogram estimation and is comparable to the maximum likelihood estimation of the parameters of the covariance function. We also show that under a mixing condition on the random field, the proposed estimator is consistent for standard one parameter models for stationary correlation functions. |
---|---|
ISSN: | 0378-3758 1873-1171 |
DOI: | 10.1016/j.jspi.2012.03.005 |