Loading…

Computer-vision classification of corn seed varieties using deep convolutional neural network

Automated classification of seed varieties is of paramount importance for seed producers to maintain the purity of a variety and crop yield. Traditional approaches based on computer vision and simple feature extraction could not guarantee high accuracy classification. This paper presents a new appro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of stored products research 2021-05, Vol.92, p.101800, Article 101800
Main Authors: Javanmardi, Shima, Miraei Ashtiani, Seyed-Hassan, Verbeek, Fons J., Martynenko, Alex
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-3d1d9f11f8fd5764430b1e671a8520c2721e4489fd68ec4fd799b409ec3016943
cites cdi_FETCH-LOGICAL-c344t-3d1d9f11f8fd5764430b1e671a8520c2721e4489fd68ec4fd799b409ec3016943
container_end_page
container_issue
container_start_page 101800
container_title Journal of stored products research
container_volume 92
creator Javanmardi, Shima
Miraei Ashtiani, Seyed-Hassan
Verbeek, Fons J.
Martynenko, Alex
description Automated classification of seed varieties is of paramount importance for seed producers to maintain the purity of a variety and crop yield. Traditional approaches based on computer vision and simple feature extraction could not guarantee high accuracy classification. This paper presents a new approach using a deep convolutional neural network (CNN) as a generic feature extractor. The extracted features were classified with artificial neural network (ANN), cubic support vector machine (SVM), quadratic SVM, weighted k-nearest-neighbor (kNN), boosted tree, bagged tree, and linear discriminant analysis (LDA). Models trained with CNN-extracted features demonstrated better classification accuracy of corn seed varieties than models based on only simple features. The CNN-ANN classifier showed the best performance, classifying 2250 test instances in 26.8 s with classification accuracy 98.1%, precision 98.2%, recall 98.1%, and F1-score 98.1%. This study demonstrates that the CNN-ANN classifier is an efficient tool for the intelligent classification of different corn seed varieties. •The performance of different algorithms for corn seeds classification was evaluated.•The accuracy of classification models increased by combining CNN with handcrafted features.•CNN-ANN classification algorithm performed better than other models.
doi_str_mv 10.1016/j.jspr.2021.101800
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jspr_2021_101800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022474X21000394</els_id><sourcerecordid>S0022474X21000394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-3d1d9f11f8fd5764430b1e671a8520c2721e4489fd68ec4fd799b409ec3016943</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKu-QMebNNMm4EYGdYQBNwpuJGSSG0ntNCVpK769rePa1eH-nMu5HyHXFFYUaHlTr-rUxRUDRueGADghCyoqmVNG2SlZADCW84q_nZOLlGoAWLNCLMj7Jhy6oceYjz750Gam0Sl5543u5zK4zITYZgnRZqOOHnuPKRuSbz8yi9hN43YMzTBv6yZrcYi_0n-F-HlJzpxuEl796ZK8Pty_bLb57vnxaXO3y03BeZ8XllrpKHXC2XVVcl7AnmJZUS3WDAyrGEXOhXS2FGi4s5WUew4STTE9L3mxJOx418SQUkSnuugPOn4rCmoGpGo1A1IzIHUENJlujyacko0eo0rGY2vQ-oimVzb4_-w_omZwuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computer-vision classification of corn seed varieties using deep convolutional neural network</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Javanmardi, Shima ; Miraei Ashtiani, Seyed-Hassan ; Verbeek, Fons J. ; Martynenko, Alex</creator><creatorcontrib>Javanmardi, Shima ; Miraei Ashtiani, Seyed-Hassan ; Verbeek, Fons J. ; Martynenko, Alex</creatorcontrib><description>Automated classification of seed varieties is of paramount importance for seed producers to maintain the purity of a variety and crop yield. Traditional approaches based on computer vision and simple feature extraction could not guarantee high accuracy classification. This paper presents a new approach using a deep convolutional neural network (CNN) as a generic feature extractor. The extracted features were classified with artificial neural network (ANN), cubic support vector machine (SVM), quadratic SVM, weighted k-nearest-neighbor (kNN), boosted tree, bagged tree, and linear discriminant analysis (LDA). Models trained with CNN-extracted features demonstrated better classification accuracy of corn seed varieties than models based on only simple features. The CNN-ANN classifier showed the best performance, classifying 2250 test instances in 26.8 s with classification accuracy 98.1%, precision 98.2%, recall 98.1%, and F1-score 98.1%. This study demonstrates that the CNN-ANN classifier is an efficient tool for the intelligent classification of different corn seed varieties. •The performance of different algorithms for corn seeds classification was evaluated.•The accuracy of classification models increased by combining CNN with handcrafted features.•CNN-ANN classification algorithm performed better than other models.</description><identifier>ISSN: 0022-474X</identifier><identifier>EISSN: 1879-1212</identifier><identifier>DOI: 10.1016/j.jspr.2021.101800</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Deep learning ; Feature extraction ; Machine vision ; Non-handcrafted features ; Texture descriptors</subject><ispartof>Journal of stored products research, 2021-05, Vol.92, p.101800, Article 101800</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-3d1d9f11f8fd5764430b1e671a8520c2721e4489fd68ec4fd799b409ec3016943</citedby><cites>FETCH-LOGICAL-c344t-3d1d9f11f8fd5764430b1e671a8520c2721e4489fd68ec4fd799b409ec3016943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Javanmardi, Shima</creatorcontrib><creatorcontrib>Miraei Ashtiani, Seyed-Hassan</creatorcontrib><creatorcontrib>Verbeek, Fons J.</creatorcontrib><creatorcontrib>Martynenko, Alex</creatorcontrib><title>Computer-vision classification of corn seed varieties using deep convolutional neural network</title><title>Journal of stored products research</title><description>Automated classification of seed varieties is of paramount importance for seed producers to maintain the purity of a variety and crop yield. Traditional approaches based on computer vision and simple feature extraction could not guarantee high accuracy classification. This paper presents a new approach using a deep convolutional neural network (CNN) as a generic feature extractor. The extracted features were classified with artificial neural network (ANN), cubic support vector machine (SVM), quadratic SVM, weighted k-nearest-neighbor (kNN), boosted tree, bagged tree, and linear discriminant analysis (LDA). Models trained with CNN-extracted features demonstrated better classification accuracy of corn seed varieties than models based on only simple features. The CNN-ANN classifier showed the best performance, classifying 2250 test instances in 26.8 s with classification accuracy 98.1%, precision 98.2%, recall 98.1%, and F1-score 98.1%. This study demonstrates that the CNN-ANN classifier is an efficient tool for the intelligent classification of different corn seed varieties. •The performance of different algorithms for corn seeds classification was evaluated.•The accuracy of classification models increased by combining CNN with handcrafted features.•CNN-ANN classification algorithm performed better than other models.</description><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Machine vision</subject><subject>Non-handcrafted features</subject><subject>Texture descriptors</subject><issn>0022-474X</issn><issn>1879-1212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKu-QMebNNMm4EYGdYQBNwpuJGSSG0ntNCVpK769rePa1eH-nMu5HyHXFFYUaHlTr-rUxRUDRueGADghCyoqmVNG2SlZADCW84q_nZOLlGoAWLNCLMj7Jhy6oceYjz750Gam0Sl5543u5zK4zITYZgnRZqOOHnuPKRuSbz8yi9hN43YMzTBv6yZrcYi_0n-F-HlJzpxuEl796ZK8Pty_bLb57vnxaXO3y03BeZ8XllrpKHXC2XVVcl7AnmJZUS3WDAyrGEXOhXS2FGi4s5WUew4STTE9L3mxJOx418SQUkSnuugPOn4rCmoGpGo1A1IzIHUENJlujyacko0eo0rGY2vQ-oimVzb4_-w_omZwuQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Javanmardi, Shima</creator><creator>Miraei Ashtiani, Seyed-Hassan</creator><creator>Verbeek, Fons J.</creator><creator>Martynenko, Alex</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202105</creationdate><title>Computer-vision classification of corn seed varieties using deep convolutional neural network</title><author>Javanmardi, Shima ; Miraei Ashtiani, Seyed-Hassan ; Verbeek, Fons J. ; Martynenko, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-3d1d9f11f8fd5764430b1e671a8520c2721e4489fd68ec4fd799b409ec3016943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Machine vision</topic><topic>Non-handcrafted features</topic><topic>Texture descriptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javanmardi, Shima</creatorcontrib><creatorcontrib>Miraei Ashtiani, Seyed-Hassan</creatorcontrib><creatorcontrib>Verbeek, Fons J.</creatorcontrib><creatorcontrib>Martynenko, Alex</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of stored products research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javanmardi, Shima</au><au>Miraei Ashtiani, Seyed-Hassan</au><au>Verbeek, Fons J.</au><au>Martynenko, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-vision classification of corn seed varieties using deep convolutional neural network</atitle><jtitle>Journal of stored products research</jtitle><date>2021-05</date><risdate>2021</risdate><volume>92</volume><spage>101800</spage><pages>101800-</pages><artnum>101800</artnum><issn>0022-474X</issn><eissn>1879-1212</eissn><abstract>Automated classification of seed varieties is of paramount importance for seed producers to maintain the purity of a variety and crop yield. Traditional approaches based on computer vision and simple feature extraction could not guarantee high accuracy classification. This paper presents a new approach using a deep convolutional neural network (CNN) as a generic feature extractor. The extracted features were classified with artificial neural network (ANN), cubic support vector machine (SVM), quadratic SVM, weighted k-nearest-neighbor (kNN), boosted tree, bagged tree, and linear discriminant analysis (LDA). Models trained with CNN-extracted features demonstrated better classification accuracy of corn seed varieties than models based on only simple features. The CNN-ANN classifier showed the best performance, classifying 2250 test instances in 26.8 s with classification accuracy 98.1%, precision 98.2%, recall 98.1%, and F1-score 98.1%. This study demonstrates that the CNN-ANN classifier is an efficient tool for the intelligent classification of different corn seed varieties. •The performance of different algorithms for corn seeds classification was evaluated.•The accuracy of classification models increased by combining CNN with handcrafted features.•CNN-ANN classification algorithm performed better than other models.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jspr.2021.101800</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-474X
ispartof Journal of stored products research, 2021-05, Vol.92, p.101800, Article 101800
issn 0022-474X
1879-1212
language eng
recordid cdi_crossref_primary_10_1016_j_jspr_2021_101800
source ScienceDirect Freedom Collection 2022-2024
subjects Deep learning
Feature extraction
Machine vision
Non-handcrafted features
Texture descriptors
title Computer-vision classification of corn seed varieties using deep convolutional neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-vision%20classification%20of%20corn%20seed%20varieties%20using%20deep%20convolutional%20neural%20network&rft.jtitle=Journal%20of%20stored%20products%20research&rft.au=Javanmardi,%20Shima&rft.date=2021-05&rft.volume=92&rft.spage=101800&rft.pages=101800-&rft.artnum=101800&rft.issn=0022-474X&rft.eissn=1879-1212&rft_id=info:doi/10.1016/j.jspr.2021.101800&rft_dat=%3Celsevier_cross%3ES0022474X21000394%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-3d1d9f11f8fd5764430b1e671a8520c2721e4489fd68ec4fd799b409ec3016943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true