Loading…
The Novel NF-κB Inhibitor, Dehydroxymethylepoxyquinomicin, Prevents Local and Remote Organ Injury Following Intestinal Ischemia/Reperfusion in Rats
Background Nuclear factor-κB regulates the expression of several genes involved in inflammation, the immune response, apoptosis, cell survival, and proliferation. Many of these same genes are activated during ischemia/reperfusion (I/R) injury. Here, we examined the anti-inflammatory efficacy of a ne...
Saved in:
Published in: | The Journal of surgical research 2008-09, Vol.149 (1), p.69-75 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background Nuclear factor-κB regulates the expression of several genes involved in inflammation, the immune response, apoptosis, cell survival, and proliferation. Many of these same genes are activated during ischemia/reperfusion (I/R) injury. Here, we examined the anti-inflammatory efficacy of a newly developed nuclear factor-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), in the intestinal I/R injury model of rats. Materials and methods Intestinal ischemia was induced by occluding the superior mesenteric artery for 60 min. The experimental animals were divided into two groups: untreated group, control; treated group, DHMEQ-treated (20 mg/kg). DHMEQ were administered intraperitoneally at 60 min prior to clamping and 5 min prior to reperfusion. Animal survival rates, intestinal tissue blood flow, serum levels of tumor necrosis factor-alpha, and interleukin-6, and the histopathology of both the intestine and the lung were analyzed. Results The DHMEQ-treated animals exhibited higher values of intestinal tissue blood flow and suppression of tumor necrosis factor-alpha and interleukin-6 production, resulting in marked prolongation of their survival times. Histopathological findings obtained by examining tissues from control animals revealed severe intestinal mucosal damage and disruption of the lung alveolar architecture accompanied by hemorrhage and marked neutrophilic infiltration. These findings were significantly ameliorated in DHMEQ-treated animals. Conclusion DHMEQ effectively prevented both intestine and lung injuries in rat intestinal I/R models. This agent may possess a good potency for clinical application in various pathological settings including intestinal I/R and/or inflammatory acute lung injury. |
---|---|
ISSN: | 0022-4804 1095-8673 |
DOI: | 10.1016/j.jss.2008.01.020 |