Loading…

Single crystal growth and physical properties of MCo2Al9 (M= Sr, Ba)

Single crystals of SrCo2Al and BaCo2Al9 were grown using a self-flux method. A LeBail analysis of the powder X-ray diffraction patterns show that both compounds crystallize in a hexagonal (P6/mmm) crystal structure with lattice parameters: a ​= ​7.8995(1) Å, c ​= ​3.9159(1) Å for SrCo2Al9, and a ​= ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state chemistry 2020-09, Vol.289, p.121509, Article 121509
Main Authors: Ryżyńska, Zuzanna, Klimczuk, Tomasz, Winiarski, Michał J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single crystals of SrCo2Al and BaCo2Al9 were grown using a self-flux method. A LeBail analysis of the powder X-ray diffraction patterns show that both compounds crystallize in a hexagonal (P6/mmm) crystal structure with lattice parameters: a ​= ​7.8995(1) Å, c ​= ​3.9159(1) Å for SrCo2Al9, and a ​= ​7.9162(2) Å, c ​= ​3.9702(1) Å for BaCo2Al9 aluminide. The low temperature analysis of the heat capacity measurements give a Sommerfeld coefficient γ ​= ​4.99(6) mJ mol−1 K−2 for SrCo2Al9 and almost twice larger γ ​= ​7.94(9) mJ mol−1 K−2 for BaCo2Al9. Resistivity measurements show metallic-like behavior, with reasonably large residual resistivity ratio RRR ​= ​6 and 10 for SrCo2Al9 and BaCo2Al9, respectively. Neither heat capacity nor resistivity measurements reveal any phase transition down to 1.8 ​K. Crystal structure of ACo2Al9: Sr/Ba atoms (yellow) filling voids in hexagonal network of CoAl9 clusters (blue). [Display omitted]
ISSN:0022-4596
1095-726X
DOI:10.1016/j.jssc.2020.121509