Loading…
Selenoprotein P as the major transporter for mercury in serum from methylmercury-poisoned rats
Selenium (Se) has been found to promote weight gain, decrease hepatic damage, but redistribute mercury (Hg) in brains and livers in methylmercury (MeHg)-poisoned rats. The aims of the present work were to examine the effects of Se on the levels of Hg in serum and the role of serum selenoproteins in...
Saved in:
Published in: | Journal of trace elements in medicine and biology 2018-12, Vol.50, p.589-595 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Selenium (Se) has been found to promote weight gain, decrease hepatic damage, but redistribute mercury (Hg) in brains and livers in methylmercury (MeHg)-poisoned rats. The aims of the present work were to examine the effects of Se on the levels of Hg in serum and the role of serum selenoproteins in binding with Hg in MeHg-poisoned rats. The concentration of Se, Hg and MeHg were studied using ICP-MS and CVAFS. The Hg- and Se-binding selenoproteins were separated and quantified using affinity chromatography with post-column isotope dilution analysis using both enriched 78Se and 199Hg. It was found that Se treatment reduced Hg levels in serum in MeHg-poisoned rats. Among the three separated selenoproteins, the amounts of SelP-bound Hg and Se increased to 73% and 93.6%, from 64.4% and 89.3% of the total Hg and Se, respectively after Se treatment, suggesting that SelP acts as a major transporter for Hg and pool for Se in serum. Over 90% of the total Hg was MeHg in serum, and the molar ratios of MeHg to Se as 1:4 and 1:9 in the formed MeHg-Se-SelP complex in the control and the Se treatment group, respectively. The elevated Se level binding with SelP facilitated the Hg extraction from tissues and organs, as well as its redistribution in brains and livers through blood circulation in the MeHg-poisoned rats. Together, our findings provide direct evidence that serum SelP is the major Hg transporter in MeHg-poisoned rats. |
---|---|
ISSN: | 0946-672X 1878-3252 |
DOI: | 10.1016/j.jtemb.2018.04.013 |