Loading…

Supervised convolutional autoencoder-based fault-relevant feature learning for fault diagnosis in industrial processes

•A supervised convolutional autoencoder is proposed for multivariate fault diagnosis.•Supervised convolutional autoencoder is used to pretrain the deep network and learn the fault-relevant feature.•A minimum difference transformation function is introduced to the network pretraining.•Classification...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Taiwan Institute of Chemical Engineers 2022-03, Vol.132, p.104200, Article 104200
Main Authors: Yu, Feng, Liu, Jianchang, Liu, Dongming, Wang, Honghai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-5e51f933de2e8475b552216248f75c04ee055bb2d9f543f9d2962eb9939252a23
cites cdi_FETCH-LOGICAL-c303t-5e51f933de2e8475b552216248f75c04ee055bb2d9f543f9d2962eb9939252a23
container_end_page
container_issue
container_start_page 104200
container_title Journal of the Taiwan Institute of Chemical Engineers
container_volume 132
creator Yu, Feng
Liu, Jianchang
Liu, Dongming
Wang, Honghai
description •A supervised convolutional autoencoder is proposed for multivariate fault diagnosis.•Supervised convolutional autoencoder is used to pretrain the deep network and learn the fault-relevant feature.•A minimum difference transformation function is introduced to the network pretraining.•Classification performance is validated on the CSTR process and the TE process. Convolutional autoencoder (CAE) is an unsupervised feature learning method and shows excellent performance in multivariate fault diagnosis. However, CAE cannot guarantee that the extracted feature is always related to the fault type due to its unsupervised self-reconstruction in the pretraining phase. To solve this problem, a new feature learning method, supervised convolutional autoencoder (SCAE) is proposed to pretrain the network and learn representative feature containing internal spatial information and fault information. In the SCAE, process sample and corresponding label are reconstructed by multilayer encoding-decoding the raw sample. Meanwhile, to prevent label information overfitting the network, a minimum difference transformation function is introduced into the loss function. The obtained fault-relevant features can be obviously distinguished between different fault types. The trained pretraining network provides more appropriate predefined parameters for fine-tuning to improve the classification performance. The effectiveness of the proposed method is evaluated by the continuous stirred tank reactor (CSTR) process and the Tennessee Eastman (TE) process. [Display omitted]
doi_str_mv 10.1016/j.jtice.2021.104200
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jtice_2021_104200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1876107021007021</els_id><sourcerecordid>S1876107021007021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-5e51f933de2e8475b552216248f75c04ee055bb2d9f543f9d2962eb9939252a23</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouOj-Ai_9A13z0bTNwYMsfsGCB_Uc0mSypNRkSdKC_97WikeHgRlm5n0ZHoRuCN4RTOrbftdnp2FHMSXzpKIYn6ENaZu6JLgV5399gy_RNqUeL9FgSvkGTW_jCeLkEphCBz-FYcwueDUUaswBvA4GYtmpZW_VOOQywgCT8rmwoPIYoRhARe_8sbAhrjeFceroQ3KpcH5OM6Yc3ex5ikFDSpCu0YVVQ4Ltb71CH48P7_vn8vD69LK_P5SaYZZLDpxYwZgBCm3V8I5zSklNq9Y2XOMKAHPeddQIyytmhaGiptAJwQTlVFF2hdjqq2NIKYKVp-g-VfySBMuFnuzlDz250JMrvVl1t6pgfm1yEGXSbmYBxkXQWZrg_tV_A8jne-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supervised convolutional autoencoder-based fault-relevant feature learning for fault diagnosis in industrial processes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yu, Feng ; Liu, Jianchang ; Liu, Dongming ; Wang, Honghai</creator><creatorcontrib>Yu, Feng ; Liu, Jianchang ; Liu, Dongming ; Wang, Honghai</creatorcontrib><description>•A supervised convolutional autoencoder is proposed for multivariate fault diagnosis.•Supervised convolutional autoencoder is used to pretrain the deep network and learn the fault-relevant feature.•A minimum difference transformation function is introduced to the network pretraining.•Classification performance is validated on the CSTR process and the TE process. Convolutional autoencoder (CAE) is an unsupervised feature learning method and shows excellent performance in multivariate fault diagnosis. However, CAE cannot guarantee that the extracted feature is always related to the fault type due to its unsupervised self-reconstruction in the pretraining phase. To solve this problem, a new feature learning method, supervised convolutional autoencoder (SCAE) is proposed to pretrain the network and learn representative feature containing internal spatial information and fault information. In the SCAE, process sample and corresponding label are reconstructed by multilayer encoding-decoding the raw sample. Meanwhile, to prevent label information overfitting the network, a minimum difference transformation function is introduced into the loss function. The obtained fault-relevant features can be obviously distinguished between different fault types. The trained pretraining network provides more appropriate predefined parameters for fine-tuning to improve the classification performance. The effectiveness of the proposed method is evaluated by the continuous stirred tank reactor (CSTR) process and the Tennessee Eastman (TE) process. [Display omitted]</description><identifier>ISSN: 1876-1070</identifier><identifier>EISSN: 1876-1089</identifier><identifier>DOI: 10.1016/j.jtice.2021.104200</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Convolutional autoencoder ; Deep learning ; Fault diagnosis ; Fault-relevant feature</subject><ispartof>Journal of the Taiwan Institute of Chemical Engineers, 2022-03, Vol.132, p.104200, Article 104200</ispartof><rights>2021 Taiwan Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-5e51f933de2e8475b552216248f75c04ee055bb2d9f543f9d2962eb9939252a23</citedby><cites>FETCH-LOGICAL-c303t-5e51f933de2e8475b552216248f75c04ee055bb2d9f543f9d2962eb9939252a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Yu, Feng</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Liu, Dongming</creatorcontrib><creatorcontrib>Wang, Honghai</creatorcontrib><title>Supervised convolutional autoencoder-based fault-relevant feature learning for fault diagnosis in industrial processes</title><title>Journal of the Taiwan Institute of Chemical Engineers</title><description>•A supervised convolutional autoencoder is proposed for multivariate fault diagnosis.•Supervised convolutional autoencoder is used to pretrain the deep network and learn the fault-relevant feature.•A minimum difference transformation function is introduced to the network pretraining.•Classification performance is validated on the CSTR process and the TE process. Convolutional autoencoder (CAE) is an unsupervised feature learning method and shows excellent performance in multivariate fault diagnosis. However, CAE cannot guarantee that the extracted feature is always related to the fault type due to its unsupervised self-reconstruction in the pretraining phase. To solve this problem, a new feature learning method, supervised convolutional autoencoder (SCAE) is proposed to pretrain the network and learn representative feature containing internal spatial information and fault information. In the SCAE, process sample and corresponding label are reconstructed by multilayer encoding-decoding the raw sample. Meanwhile, to prevent label information overfitting the network, a minimum difference transformation function is introduced into the loss function. The obtained fault-relevant features can be obviously distinguished between different fault types. The trained pretraining network provides more appropriate predefined parameters for fine-tuning to improve the classification performance. The effectiveness of the proposed method is evaluated by the continuous stirred tank reactor (CSTR) process and the Tennessee Eastman (TE) process. [Display omitted]</description><subject>Convolutional autoencoder</subject><subject>Deep learning</subject><subject>Fault diagnosis</subject><subject>Fault-relevant feature</subject><issn>1876-1070</issn><issn>1876-1089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouOj-Ai_9A13z0bTNwYMsfsGCB_Uc0mSypNRkSdKC_97WikeHgRlm5n0ZHoRuCN4RTOrbftdnp2FHMSXzpKIYn6ENaZu6JLgV5399gy_RNqUeL9FgSvkGTW_jCeLkEphCBz-FYcwueDUUaswBvA4GYtmpZW_VOOQywgCT8rmwoPIYoRhARe_8sbAhrjeFceroQ3KpcH5OM6Yc3ex5ikFDSpCu0YVVQ4Ltb71CH48P7_vn8vD69LK_P5SaYZZLDpxYwZgBCm3V8I5zSklNq9Y2XOMKAHPeddQIyytmhaGiptAJwQTlVFF2hdjqq2NIKYKVp-g-VfySBMuFnuzlDz250JMrvVl1t6pgfm1yEGXSbmYBxkXQWZrg_tV_A8jne-I</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Yu, Feng</creator><creator>Liu, Jianchang</creator><creator>Liu, Dongming</creator><creator>Wang, Honghai</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202203</creationdate><title>Supervised convolutional autoencoder-based fault-relevant feature learning for fault diagnosis in industrial processes</title><author>Yu, Feng ; Liu, Jianchang ; Liu, Dongming ; Wang, Honghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-5e51f933de2e8475b552216248f75c04ee055bb2d9f543f9d2962eb9939252a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolutional autoencoder</topic><topic>Deep learning</topic><topic>Fault diagnosis</topic><topic>Fault-relevant feature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Feng</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Liu, Dongming</creatorcontrib><creatorcontrib>Wang, Honghai</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Taiwan Institute of Chemical Engineers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Feng</au><au>Liu, Jianchang</au><au>Liu, Dongming</au><au>Wang, Honghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised convolutional autoencoder-based fault-relevant feature learning for fault diagnosis in industrial processes</atitle><jtitle>Journal of the Taiwan Institute of Chemical Engineers</jtitle><date>2022-03</date><risdate>2022</risdate><volume>132</volume><spage>104200</spage><pages>104200-</pages><artnum>104200</artnum><issn>1876-1070</issn><eissn>1876-1089</eissn><abstract>•A supervised convolutional autoencoder is proposed for multivariate fault diagnosis.•Supervised convolutional autoencoder is used to pretrain the deep network and learn the fault-relevant feature.•A minimum difference transformation function is introduced to the network pretraining.•Classification performance is validated on the CSTR process and the TE process. Convolutional autoencoder (CAE) is an unsupervised feature learning method and shows excellent performance in multivariate fault diagnosis. However, CAE cannot guarantee that the extracted feature is always related to the fault type due to its unsupervised self-reconstruction in the pretraining phase. To solve this problem, a new feature learning method, supervised convolutional autoencoder (SCAE) is proposed to pretrain the network and learn representative feature containing internal spatial information and fault information. In the SCAE, process sample and corresponding label are reconstructed by multilayer encoding-decoding the raw sample. Meanwhile, to prevent label information overfitting the network, a minimum difference transformation function is introduced into the loss function. The obtained fault-relevant features can be obviously distinguished between different fault types. The trained pretraining network provides more appropriate predefined parameters for fine-tuning to improve the classification performance. The effectiveness of the proposed method is evaluated by the continuous stirred tank reactor (CSTR) process and the Tennessee Eastman (TE) process. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jtice.2021.104200</doi></addata></record>
fulltext fulltext
identifier ISSN: 1876-1070
ispartof Journal of the Taiwan Institute of Chemical Engineers, 2022-03, Vol.132, p.104200, Article 104200
issn 1876-1070
1876-1089
language eng
recordid cdi_crossref_primary_10_1016_j_jtice_2021_104200
source ScienceDirect Freedom Collection 2022-2024
subjects Convolutional autoencoder
Deep learning
Fault diagnosis
Fault-relevant feature
title Supervised convolutional autoencoder-based fault-relevant feature learning for fault diagnosis in industrial processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T11%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20convolutional%20autoencoder-based%20fault-relevant%20feature%20learning%20for%20fault%20diagnosis%20in%20industrial%20processes&rft.jtitle=Journal%20of%20the%20Taiwan%20Institute%20of%20Chemical%20Engineers&rft.au=Yu,%20Feng&rft.date=2022-03&rft.volume=132&rft.spage=104200&rft.pages=104200-&rft.artnum=104200&rft.issn=1876-1070&rft.eissn=1876-1089&rft_id=info:doi/10.1016/j.jtice.2021.104200&rft_dat=%3Celsevier_cross%3ES1876107021007021%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-5e51f933de2e8475b552216248f75c04ee055bb2d9f543f9d2962eb9939252a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true