Loading…

Requirements for partial turbulence simulations using nondimensional turbulence energy contributions

Quantifying turbulence effects is crucial for understanding building aerodynamics and for ensuring accurate wind tunnel test methods. This is especially important in wind tunnel methods that require post-experiment adjustments because approximate wind fields are used, such as the Partial Turbulence...

Full description

Saved in:
Bibliographic Details
Published in:Journal of wind engineering and industrial aerodynamics 2024-11, Vol.254, p.105886, Article 105886
Main Authors: Acosta, Timothy John, Guo, Yitian, Wang, Jin, Brusco, Stefano, Kopp, Gregory A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c228t-308718a0e4d406bcd9a1ffa2c7fca7c0525d36410f7ae6bf754fdd4cdd3bfd9e3
container_end_page
container_issue
container_start_page 105886
container_title Journal of wind engineering and industrial aerodynamics
container_volume 254
creator Acosta, Timothy John
Guo, Yitian
Wang, Jin
Brusco, Stefano
Kopp, Gregory A.
description Quantifying turbulence effects is crucial for understanding building aerodynamics and for ensuring accurate wind tunnel test methods. This is especially important in wind tunnel methods that require post-experiment adjustments because approximate wind fields are used, such as the Partial Turbulence Simulation (PTS) approach. Understanding and analyzing these effects enables load adjustments since the PTS method only requires matching the high frequency portions of the upstream spectra of the longitudinal velocity component in model and full-scale. However, the limits for which the PTS method is applicable are unclear in terms of the allowable range of wind field characteristics that can be used in the wind tunnel simulation. To address this, the paper utilizes two nondimensional parameters, one representing the small-scale turbulence energy, ES, and the other the large-scale turbulence energy, EL, to elaborate the aerodynamic effects of turbulence intensity and integral length scales in the upstream wind. The results show that the maximum allowable mismatch ratio of integral length scales and of Jensen numbers between model and full-scale simulations depend on the target small-scale turbulence energy and the maximum allowable deviation of small-scale energy. By quantifying the effects of ES and EL on area-averaged pressure coefficients, the allowable limits are identified for wind tunnel test parameters that lead to negligible differences in the resultant pressure coefficient statistics in regions of separated-reattaching flow on the roof of a low-rise building.
doi_str_mv 10.1016/j.jweia.2024.105886
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jweia_2024_105886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167610524002496</els_id><sourcerecordid>S0167610524002496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-308718a0e4d406bcd9a1ffa2c7fca7c0525d36410f7ae6bf754fdd4cdd3bfd9e3</originalsourceid><addsrcrecordid>eNp9kL1OwzAQgD2ARCk8AYtfIMFOnDgdGFDFn1QJCcFsOfa5cpQ4xXZAfXuchoWF6XQ_3-nuQ-iGkpwSWt92efcNVuYFKViqVE1Tn6FV6vCsTukFugyhI4RwxssV0m_wOVkPA7gYsBk9PkgfrexxnHw79eAU4GCHqZfRji7gKVi3x2502iYmpNrfWXDg90esRhe9bacTdIXOjewDXP_GNfp4fHjfPme716eX7f0uU0XRxKwkDaeNJMA0I3Wr9EZSY2ShuFGSK1IVlS5rRonhEurW8IoZrZnSumyN3kC5RuWyV_kxBA9GHLwdpD8KSsQsR3TiJEfMcsQiJ1F3CwXptC8LXgRl51908qKi0KP9l_8B8hF1oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Requirements for partial turbulence simulations using nondimensional turbulence energy contributions</title><source>Elsevier</source><creator>Acosta, Timothy John ; Guo, Yitian ; Wang, Jin ; Brusco, Stefano ; Kopp, Gregory A.</creator><creatorcontrib>Acosta, Timothy John ; Guo, Yitian ; Wang, Jin ; Brusco, Stefano ; Kopp, Gregory A.</creatorcontrib><description>Quantifying turbulence effects is crucial for understanding building aerodynamics and for ensuring accurate wind tunnel test methods. This is especially important in wind tunnel methods that require post-experiment adjustments because approximate wind fields are used, such as the Partial Turbulence Simulation (PTS) approach. Understanding and analyzing these effects enables load adjustments since the PTS method only requires matching the high frequency portions of the upstream spectra of the longitudinal velocity component in model and full-scale. However, the limits for which the PTS method is applicable are unclear in terms of the allowable range of wind field characteristics that can be used in the wind tunnel simulation. To address this, the paper utilizes two nondimensional parameters, one representing the small-scale turbulence energy, ES, and the other the large-scale turbulence energy, EL, to elaborate the aerodynamic effects of turbulence intensity and integral length scales in the upstream wind. The results show that the maximum allowable mismatch ratio of integral length scales and of Jensen numbers between model and full-scale simulations depend on the target small-scale turbulence energy and the maximum allowable deviation of small-scale energy. By quantifying the effects of ES and EL on area-averaged pressure coefficients, the allowable limits are identified for wind tunnel test parameters that lead to negligible differences in the resultant pressure coefficient statistics in regions of separated-reattaching flow on the roof of a low-rise building.</description><identifier>ISSN: 0167-6105</identifier><identifier>DOI: 10.1016/j.jweia.2024.105886</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Building aerodynamics ; Partial turbulence simulation ; Wind tunnel testing</subject><ispartof>Journal of wind engineering and industrial aerodynamics, 2024-11, Vol.254, p.105886, Article 105886</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-308718a0e4d406bcd9a1ffa2c7fca7c0525d36410f7ae6bf754fdd4cdd3bfd9e3</cites><orcidid>0000-0001-9536-6432 ; 0000-0002-0784-3014 ; 0000-0002-5454-6063 ; 0000-0003-0472-9133 ; 0000-0003-2832-6507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Acosta, Timothy John</creatorcontrib><creatorcontrib>Guo, Yitian</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Brusco, Stefano</creatorcontrib><creatorcontrib>Kopp, Gregory A.</creatorcontrib><title>Requirements for partial turbulence simulations using nondimensional turbulence energy contributions</title><title>Journal of wind engineering and industrial aerodynamics</title><description>Quantifying turbulence effects is crucial for understanding building aerodynamics and for ensuring accurate wind tunnel test methods. This is especially important in wind tunnel methods that require post-experiment adjustments because approximate wind fields are used, such as the Partial Turbulence Simulation (PTS) approach. Understanding and analyzing these effects enables load adjustments since the PTS method only requires matching the high frequency portions of the upstream spectra of the longitudinal velocity component in model and full-scale. However, the limits for which the PTS method is applicable are unclear in terms of the allowable range of wind field characteristics that can be used in the wind tunnel simulation. To address this, the paper utilizes two nondimensional parameters, one representing the small-scale turbulence energy, ES, and the other the large-scale turbulence energy, EL, to elaborate the aerodynamic effects of turbulence intensity and integral length scales in the upstream wind. The results show that the maximum allowable mismatch ratio of integral length scales and of Jensen numbers between model and full-scale simulations depend on the target small-scale turbulence energy and the maximum allowable deviation of small-scale energy. By quantifying the effects of ES and EL on area-averaged pressure coefficients, the allowable limits are identified for wind tunnel test parameters that lead to negligible differences in the resultant pressure coefficient statistics in regions of separated-reattaching flow on the roof of a low-rise building.</description><subject>Building aerodynamics</subject><subject>Partial turbulence simulation</subject><subject>Wind tunnel testing</subject><issn>0167-6105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQgD2ARCk8AYtfIMFOnDgdGFDFn1QJCcFsOfa5cpQ4xXZAfXuchoWF6XQ_3-nuQ-iGkpwSWt92efcNVuYFKViqVE1Tn6FV6vCsTukFugyhI4RwxssV0m_wOVkPA7gYsBk9PkgfrexxnHw79eAU4GCHqZfRji7gKVi3x2502iYmpNrfWXDg90esRhe9bacTdIXOjewDXP_GNfp4fHjfPme716eX7f0uU0XRxKwkDaeNJMA0I3Wr9EZSY2ShuFGSK1IVlS5rRonhEurW8IoZrZnSumyN3kC5RuWyV_kxBA9GHLwdpD8KSsQsR3TiJEfMcsQiJ1F3CwXptC8LXgRl51908qKi0KP9l_8B8hF1oQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Acosta, Timothy John</creator><creator>Guo, Yitian</creator><creator>Wang, Jin</creator><creator>Brusco, Stefano</creator><creator>Kopp, Gregory A.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9536-6432</orcidid><orcidid>https://orcid.org/0000-0002-0784-3014</orcidid><orcidid>https://orcid.org/0000-0002-5454-6063</orcidid><orcidid>https://orcid.org/0000-0003-0472-9133</orcidid><orcidid>https://orcid.org/0000-0003-2832-6507</orcidid></search><sort><creationdate>202411</creationdate><title>Requirements for partial turbulence simulations using nondimensional turbulence energy contributions</title><author>Acosta, Timothy John ; Guo, Yitian ; Wang, Jin ; Brusco, Stefano ; Kopp, Gregory A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-308718a0e4d406bcd9a1ffa2c7fca7c0525d36410f7ae6bf754fdd4cdd3bfd9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Building aerodynamics</topic><topic>Partial turbulence simulation</topic><topic>Wind tunnel testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acosta, Timothy John</creatorcontrib><creatorcontrib>Guo, Yitian</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Brusco, Stefano</creatorcontrib><creatorcontrib>Kopp, Gregory A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acosta, Timothy John</au><au>Guo, Yitian</au><au>Wang, Jin</au><au>Brusco, Stefano</au><au>Kopp, Gregory A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Requirements for partial turbulence simulations using nondimensional turbulence energy contributions</atitle><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle><date>2024-11</date><risdate>2024</risdate><volume>254</volume><spage>105886</spage><pages>105886-</pages><artnum>105886</artnum><issn>0167-6105</issn><abstract>Quantifying turbulence effects is crucial for understanding building aerodynamics and for ensuring accurate wind tunnel test methods. This is especially important in wind tunnel methods that require post-experiment adjustments because approximate wind fields are used, such as the Partial Turbulence Simulation (PTS) approach. Understanding and analyzing these effects enables load adjustments since the PTS method only requires matching the high frequency portions of the upstream spectra of the longitudinal velocity component in model and full-scale. However, the limits for which the PTS method is applicable are unclear in terms of the allowable range of wind field characteristics that can be used in the wind tunnel simulation. To address this, the paper utilizes two nondimensional parameters, one representing the small-scale turbulence energy, ES, and the other the large-scale turbulence energy, EL, to elaborate the aerodynamic effects of turbulence intensity and integral length scales in the upstream wind. The results show that the maximum allowable mismatch ratio of integral length scales and of Jensen numbers between model and full-scale simulations depend on the target small-scale turbulence energy and the maximum allowable deviation of small-scale energy. By quantifying the effects of ES and EL on area-averaged pressure coefficients, the allowable limits are identified for wind tunnel test parameters that lead to negligible differences in the resultant pressure coefficient statistics in regions of separated-reattaching flow on the roof of a low-rise building.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jweia.2024.105886</doi><orcidid>https://orcid.org/0000-0001-9536-6432</orcidid><orcidid>https://orcid.org/0000-0002-0784-3014</orcidid><orcidid>https://orcid.org/0000-0002-5454-6063</orcidid><orcidid>https://orcid.org/0000-0003-0472-9133</orcidid><orcidid>https://orcid.org/0000-0003-2832-6507</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6105
ispartof Journal of wind engineering and industrial aerodynamics, 2024-11, Vol.254, p.105886, Article 105886
issn 0167-6105
language eng
recordid cdi_crossref_primary_10_1016_j_jweia_2024_105886
source Elsevier
subjects Building aerodynamics
Partial turbulence simulation
Wind tunnel testing
title Requirements for partial turbulence simulations using nondimensional turbulence energy contributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Requirements%20for%20partial%20turbulence%20simulations%20using%20nondimensional%20turbulence%20energy%20contributions&rft.jtitle=Journal%20of%20wind%20engineering%20and%20industrial%20aerodynamics&rft.au=Acosta,%20Timothy%20John&rft.date=2024-11&rft.volume=254&rft.spage=105886&rft.pages=105886-&rft.artnum=105886&rft.issn=0167-6105&rft_id=info:doi/10.1016/j.jweia.2024.105886&rft_dat=%3Celsevier_cross%3ES0167610524002496%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c228t-308718a0e4d406bcd9a1ffa2c7fca7c0525d36410f7ae6bf754fdd4cdd3bfd9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true