Loading…
Recent development in modification of polysulfone membrane for water treatment application
Polysulfone (PSF) membranes have been widely used for wastewater treatment due to their desired properties like stability, high mechanical strength and ease of modification. The modification of PSF membranes presents a great opportunity in improving their performance in the field of wastewater treat...
Saved in:
Published in: | Journal of water process engineering 2021-04, Vol.40, p.101835, Article 101835 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polysulfone (PSF) membranes have been widely used for wastewater treatment due to their desired properties like stability, high mechanical strength and ease of modification. The modification of PSF membranes presents a great opportunity in improving their performance in the field of wastewater treatment. This review presents a comprehensive review of PSF ultrafiltration (UF) and microfiltration (MF) membranes modification via various techniques as well as novel modifiers for water purification by paying attention to various issues inherent in the modification process. Recent studies on nanomaterial as well as hydrophilic macromolecules used for the modifications of PSF UF/MF membranes for water treatment application have been comprehensively analysed. These modified membranes exhibited a remarkable improvement with regards to water permeability, salt rejection and anti-fouling features of PSF modified membranes when compared to the neat PSF membranes. The modification techniques such as coating, grafting/blending, layer by layer and deposition are discussed. Besides, the impacts of these modifiers on the performance of the membranes for wastewater treatment as well as their environmental impacts are discussed. Based on the literature review, it is obvious that nanomaterial/hydrophilic macromolecules modified PSF membranes have unique features that can contribute to the advancement of innovative nanocomposite membranes with enhanced capacities for wastewater treatment. |
---|---|
ISSN: | 2214-7144 2214-7144 |
DOI: | 10.1016/j.jwpe.2020.101835 |