Loading…

Removal of hexavalent chromium by encapsulated chitosan-modified magnetic carbon nanotubes: Fixed-bed column study and modelling

A new type of composite adsorbent, encapsulated chitosan-modified magnetic carbon nanotubes (CS/MWCNTs/Fe) beads were used to remove hexavalent chromium (Cr(VI)) from aqueous solutions in a fixed-bed column. Among the various combination of operating parameters, we obtain a maximum volume of treated...

Full description

Saved in:
Bibliographic Details
Published in:Journal of water process engineering 2021-08, Vol.42, p.102143, Article 102143
Main Authors: Aslam, Mian Muhammad Ahson, Den, Walter, Kuo, Hsion-Wen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new type of composite adsorbent, encapsulated chitosan-modified magnetic carbon nanotubes (CS/MWCNTs/Fe) beads were used to remove hexavalent chromium (Cr(VI)) from aqueous solutions in a fixed-bed column. Among the various combination of operating parameters, we obtain a maximum volume of treated effluent (210 mL) under the following conditions: flow rate, 1 mL min−1; bed height, 8 cm; feed Cr(VI) concentration, 30 mg L−1; and solution pH, 4.0 ± 0.2. The corresponding adsorption capacity was 1.54 mg g-1 and the overall Cr(VI) removal efficiency was 54 %. In characterizing the dynamics of the adsorption process and breakthrough profiles, we found that the Thomas model and the Yoon-Nelson model both accurately described the breakthrough curves under all experimental conditions, while the Adams-Bohart model was applicable only for an early phase of dynamic behavior CtC0≤0.5 of the CS/MWCNTs/Fe beads column. Columns with shorter bed heights favored the global mass transfer rate, especially during the early breakthrough periods. Moreover, the bed depth service time (BDST) model was validated experimentally, enabling the prediction of service time of the adsorption bed at different outlet concentrations using hypothetical flow rates and inlet concentrations. Scaled-up study was performed to observe the column performance at higher throughputs. The high selectivity of Cr(VI) adsorption in the simulated wastewater in the presence of other heavy metals (copper and cadmium) and background anion (phosphate) suggests the applicability of CS/MWCNTs/Fe beads for Cr(VI) removal from industrial effluents.
ISSN:2214-7144
2214-7144
DOI:10.1016/j.jwpe.2021.102143