Loading…
Transformation of N and S pollutants and characterization of microbial communities in constructed wetlands with Vallisneria natans
The simulated constructed wetland with Vallisneria natans was studied for the migration and transformation of dissolved oxygen, nitrogen and sulfur pollutants and characterization of microbial community under different concentrations (7.5, 15, 22.5, 30 mgN/L) of NH4+-N. Results indicated that the re...
Saved in:
Published in: | Journal of water process engineering 2021-08, Vol.42, p.102186, Article 102186 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The simulated constructed wetland with Vallisneria natans was studied for the migration and transformation of dissolved oxygen, nitrogen and sulfur pollutants and characterization of microbial community under different concentrations (7.5, 15, 22.5, 30 mgN/L) of NH4+-N. Results indicated that the recovery rate of DO was 0.027–0.07 mg/h, and the removal rate of NH4+-N was over 90%. Meanwhile, S2− was generated into different forms when the DO and the sulfate concentration were below 1 mg/L and over 100 mg/L, respectively. In addition, 16S rRNA sequencing analysis showed that after 30 days, the microbial diversity in both sediments declined, while that in the biofilms of leaves increased by 16.42%. Overall, Vallisneria natans can change microbial communities by releasing oxygen and provide attachment system to form biofilms. When Cinlet(NH4+-N) |
---|---|
ISSN: | 2214-7144 2214-7144 |
DOI: | 10.1016/j.jwpe.2021.102186 |