Loading…

Peroxymonosulfate-based photodegradation of naproxen by stimulating (Mo, V, and Zr)-carbide nanoparticles

Molybdenum carbide (Mo2C), vanadium carbide (VC), and zirconium carbide (ZrC) nanoparticles (NPs) were investigated systematically as photocatalysts for the stimulation of peroxymonosulfate (PMS) for the degradation of naproxen (NX) under visible light. Characterizations of the samples by XRD, XPS,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of water process engineering 2023-08, Vol.54, p.104027, Article 104027
Main Authors: Rasool, Raqiqa Tur, Ashraf, Ghulam Abbas, Fadhali, Mohammed M., Al-Sulaimi, Sulaiman, Ghernaout, Djamel, El Jery, Atef, Aldrdery, Moutaz, Elkhaleefa, Abubakr, Hassan, Noor, Ajmal, Zeeshan, Afzal, Shahzad, Guo, Hai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molybdenum carbide (Mo2C), vanadium carbide (VC), and zirconium carbide (ZrC) nanoparticles (NPs) were investigated systematically as photocatalysts for the stimulation of peroxymonosulfate (PMS) for the degradation of naproxen (NX) under visible light. Characterizations of the samples by XRD, XPS, SEM, UV/PL, and BET were performed. In particular, the impact of exogenous variables on NX degradation was thoroughly and methodically investigated. 80.47 % of NX was decomposed over 60 min with 0.75 g/L PMS and ZrC at pH 3. ZrC NPs showed higher photocatalytic/photo-piezocatalytic properties in the degradation of NX compared to VC and Mo2C NPs. The substantial rise in the reaction rate of NX in ZrC/PMS-based photo-degradation can be attributed to the larger surface area, mesoporous, narrow energy bandgap (Eg), and lower intensity of photoelectrons and holes recombining of ZrC NPs. Due to their substantial photocatalytic efficacy and significant piezo-photocatalytic properties, all NPs are viable candidates for piezo-photocatalytic/photocatalytic degradation. The degradation of NX was then seen in the active species scavenging studies, in which sulfate radicals, hydroxyl radicals, holes, and superoxide radicals were involved. According to continuous cycle studies, the ZrC NPs also had excellent durability and reusability. Additionally, the potential paths for NX degradation were proposed based on the study of LC-MS, and the degradation mechanism of NX was clarified. Based on the superior stability and reusability of ZrC NPs after 5 successive cycles, this material is anticipated to be utilized in the future for the treatment of wastewater, containing pharmaceuticals. [Display omitted] •Peroxymonosulfate (PMS) was first reported to be photoactivated by Mo2C, VC, and ZrC nanoparticles (NPs).•Naproxen (NX) degradation parameters were evaluated entirely.•ZrC NPs also observed significant removal in the photo-piezoelectric catalytic system.•A degradation mechanism under ZrC/PMS/light system was proposed.
ISSN:2214-7144
2214-7144
DOI:10.1016/j.jwpe.2023.104027