Loading…

Geometry-assisted multi-representation view reconstruction network for Light Field image angular super-resolution

Light Field (LF) imaging enables many attractive applications since scene angular and spatial information can be captured simultaneously. However, the limited angular resolution hinders its development. To alleviate this problem, in this paper, we put forward a geometry-assisted multi-representation...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems 2023-05, Vol.267, p.110390, Article 110390
Main Authors: Liu, Deyang, Tong, Zaidong, Huang, Yan, Chen, Yilei, Zuo, Yifan, Fang, Yuming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-cfd9d81c4976f720ebeb023ff3965c82f9708930dffd0dc8a521889a692bac2f3
cites cdi_FETCH-LOGICAL-c306t-cfd9d81c4976f720ebeb023ff3965c82f9708930dffd0dc8a521889a692bac2f3
container_end_page
container_issue
container_start_page 110390
container_title Knowledge-based systems
container_volume 267
creator Liu, Deyang
Tong, Zaidong
Huang, Yan
Chen, Yilei
Zuo, Yifan
Fang, Yuming
description Light Field (LF) imaging enables many attractive applications since scene angular and spatial information can be captured simultaneously. However, the limited angular resolution hinders its development. To alleviate this problem, in this paper, we put forward a geometry-assisted multi-representation view reconstruction network for LF angular super-resolution. There are two stages in our method, namely multi-representation view reconstruction and geometry-assisted refinement. The former fully utilizes the LF lenslet image, sub-aperture image array, and pseudo video sequence representations to synthesize a high-angular-resolution dense LF image stack by adequately exploring the structural characteristics of such three representations. The latter aims to exploit the intra-LF spatial–angular information and inter-LF geometry information contained in the derived dense LF image stack to further promote the reconstruction performance. Specifically, a bidirectional view stack structure is constituted first, which is then fed into the proposed geometry-aware refinement network to allow adequate interactions between the intra-LF spatial–angular information and inter-LF geometry information. Comprehensive angular reconstruction experiments on both real-world and synthetic LF scenes validate the effectiveness of the proposed method. Furthermore, extensible applications on scene depth estimation also demonstrate that the proposed method can recover more texture details.
doi_str_mv 10.1016/j.knosys.2023.110390
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_knosys_2023_110390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705123001405</els_id><sourcerecordid>S0950705123001405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-cfd9d81c4976f720ebeb023ff3965c82f9708930dffd0dc8a521889a692bac2f3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKtv4CIvMONNpvOTjSDFVqHgRtchTW5q2umkJhlL396p49rVhQvncL6PkHsGOQNWPWzzXefjKeYceJEzBoWACzJhTc2zegbikkxAlJDVULJrchPjFgA4Z82EfC3R7zGFU6ZidDGhofu-TS4LeAgYsUsqOd_Rb4dHGlD7LqbQ699fh-now45aH-jKbT4TXThsDXV7tUGquk3fqkBjf8Aw1EXf9ufYLbmyqo1493en5GPx_D5_yVZvy9f50yrTBVQp09YI0zA9E3Vlaw64xvVAZ20hqlI33IoaGlGAsdaA0Y0qB55GqErwtdLcFlMyG3t18DEGtPIQhmXhJBnIsza5laM2edYmR21D7HGM4bBtoA4yaoedRuMG_CSNd_8X_ADg4nyZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometry-assisted multi-representation view reconstruction network for Light Field image angular super-resolution</title><source>ScienceDirect Journals</source><creator>Liu, Deyang ; Tong, Zaidong ; Huang, Yan ; Chen, Yilei ; Zuo, Yifan ; Fang, Yuming</creator><creatorcontrib>Liu, Deyang ; Tong, Zaidong ; Huang, Yan ; Chen, Yilei ; Zuo, Yifan ; Fang, Yuming</creatorcontrib><description>Light Field (LF) imaging enables many attractive applications since scene angular and spatial information can be captured simultaneously. However, the limited angular resolution hinders its development. To alleviate this problem, in this paper, we put forward a geometry-assisted multi-representation view reconstruction network for LF angular super-resolution. There are two stages in our method, namely multi-representation view reconstruction and geometry-assisted refinement. The former fully utilizes the LF lenslet image, sub-aperture image array, and pseudo video sequence representations to synthesize a high-angular-resolution dense LF image stack by adequately exploring the structural characteristics of such three representations. The latter aims to exploit the intra-LF spatial–angular information and inter-LF geometry information contained in the derived dense LF image stack to further promote the reconstruction performance. Specifically, a bidirectional view stack structure is constituted first, which is then fed into the proposed geometry-aware refinement network to allow adequate interactions between the intra-LF spatial–angular information and inter-LF geometry information. Comprehensive angular reconstruction experiments on both real-world and synthetic LF scenes validate the effectiveness of the proposed method. Furthermore, extensible applications on scene depth estimation also demonstrate that the proposed method can recover more texture details.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2023.110390</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Angular reconstruction ; Angular super-resolution ; Light field image ; Multi-representation ; Reconstruction network</subject><ispartof>Knowledge-based systems, 2023-05, Vol.267, p.110390, Article 110390</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-cfd9d81c4976f720ebeb023ff3965c82f9708930dffd0dc8a521889a692bac2f3</citedby><cites>FETCH-LOGICAL-c306t-cfd9d81c4976f720ebeb023ff3965c82f9708930dffd0dc8a521889a692bac2f3</cites><orcidid>0000-0003-4980-7211 ; 0000-0001-7991-8735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Deyang</creatorcontrib><creatorcontrib>Tong, Zaidong</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Chen, Yilei</creatorcontrib><creatorcontrib>Zuo, Yifan</creatorcontrib><creatorcontrib>Fang, Yuming</creatorcontrib><title>Geometry-assisted multi-representation view reconstruction network for Light Field image angular super-resolution</title><title>Knowledge-based systems</title><description>Light Field (LF) imaging enables many attractive applications since scene angular and spatial information can be captured simultaneously. However, the limited angular resolution hinders its development. To alleviate this problem, in this paper, we put forward a geometry-assisted multi-representation view reconstruction network for LF angular super-resolution. There are two stages in our method, namely multi-representation view reconstruction and geometry-assisted refinement. The former fully utilizes the LF lenslet image, sub-aperture image array, and pseudo video sequence representations to synthesize a high-angular-resolution dense LF image stack by adequately exploring the structural characteristics of such three representations. The latter aims to exploit the intra-LF spatial–angular information and inter-LF geometry information contained in the derived dense LF image stack to further promote the reconstruction performance. Specifically, a bidirectional view stack structure is constituted first, which is then fed into the proposed geometry-aware refinement network to allow adequate interactions between the intra-LF spatial–angular information and inter-LF geometry information. Comprehensive angular reconstruction experiments on both real-world and synthetic LF scenes validate the effectiveness of the proposed method. Furthermore, extensible applications on scene depth estimation also demonstrate that the proposed method can recover more texture details.</description><subject>Angular reconstruction</subject><subject>Angular super-resolution</subject><subject>Light field image</subject><subject>Multi-representation</subject><subject>Reconstruction network</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKtv4CIvMONNpvOTjSDFVqHgRtchTW5q2umkJhlL396p49rVhQvncL6PkHsGOQNWPWzzXefjKeYceJEzBoWACzJhTc2zegbikkxAlJDVULJrchPjFgA4Z82EfC3R7zGFU6ZidDGhofu-TS4LeAgYsUsqOd_Rb4dHGlD7LqbQ699fh-now45aH-jKbT4TXThsDXV7tUGquk3fqkBjf8Aw1EXf9ufYLbmyqo1493en5GPx_D5_yVZvy9f50yrTBVQp09YI0zA9E3Vlaw64xvVAZ20hqlI33IoaGlGAsdaA0Y0qB55GqErwtdLcFlMyG3t18DEGtPIQhmXhJBnIsza5laM2edYmR21D7HGM4bBtoA4yaoedRuMG_CSNd_8X_ADg4nyZ</recordid><startdate>20230512</startdate><enddate>20230512</enddate><creator>Liu, Deyang</creator><creator>Tong, Zaidong</creator><creator>Huang, Yan</creator><creator>Chen, Yilei</creator><creator>Zuo, Yifan</creator><creator>Fang, Yuming</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4980-7211</orcidid><orcidid>https://orcid.org/0000-0001-7991-8735</orcidid></search><sort><creationdate>20230512</creationdate><title>Geometry-assisted multi-representation view reconstruction network for Light Field image angular super-resolution</title><author>Liu, Deyang ; Tong, Zaidong ; Huang, Yan ; Chen, Yilei ; Zuo, Yifan ; Fang, Yuming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-cfd9d81c4976f720ebeb023ff3965c82f9708930dffd0dc8a521889a692bac2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angular reconstruction</topic><topic>Angular super-resolution</topic><topic>Light field image</topic><topic>Multi-representation</topic><topic>Reconstruction network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Deyang</creatorcontrib><creatorcontrib>Tong, Zaidong</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Chen, Yilei</creatorcontrib><creatorcontrib>Zuo, Yifan</creatorcontrib><creatorcontrib>Fang, Yuming</creatorcontrib><collection>CrossRef</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Deyang</au><au>Tong, Zaidong</au><au>Huang, Yan</au><au>Chen, Yilei</au><au>Zuo, Yifan</au><au>Fang, Yuming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry-assisted multi-representation view reconstruction network for Light Field image angular super-resolution</atitle><jtitle>Knowledge-based systems</jtitle><date>2023-05-12</date><risdate>2023</risdate><volume>267</volume><spage>110390</spage><pages>110390-</pages><artnum>110390</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Light Field (LF) imaging enables many attractive applications since scene angular and spatial information can be captured simultaneously. However, the limited angular resolution hinders its development. To alleviate this problem, in this paper, we put forward a geometry-assisted multi-representation view reconstruction network for LF angular super-resolution. There are two stages in our method, namely multi-representation view reconstruction and geometry-assisted refinement. The former fully utilizes the LF lenslet image, sub-aperture image array, and pseudo video sequence representations to synthesize a high-angular-resolution dense LF image stack by adequately exploring the structural characteristics of such three representations. The latter aims to exploit the intra-LF spatial–angular information and inter-LF geometry information contained in the derived dense LF image stack to further promote the reconstruction performance. Specifically, a bidirectional view stack structure is constituted first, which is then fed into the proposed geometry-aware refinement network to allow adequate interactions between the intra-LF spatial–angular information and inter-LF geometry information. Comprehensive angular reconstruction experiments on both real-world and synthetic LF scenes validate the effectiveness of the proposed method. Furthermore, extensible applications on scene depth estimation also demonstrate that the proposed method can recover more texture details.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2023.110390</doi><orcidid>https://orcid.org/0000-0003-4980-7211</orcidid><orcidid>https://orcid.org/0000-0001-7991-8735</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2023-05, Vol.267, p.110390, Article 110390
issn 0950-7051
1872-7409
language eng
recordid cdi_crossref_primary_10_1016_j_knosys_2023_110390
source ScienceDirect Journals
subjects Angular reconstruction
Angular super-resolution
Light field image
Multi-representation
Reconstruction network
title Geometry-assisted multi-representation view reconstruction network for Light Field image angular super-resolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry-assisted%20multi-representation%20view%20reconstruction%20network%20for%20Light%20Field%20image%20angular%20super-resolution&rft.jtitle=Knowledge-based%20systems&rft.au=Liu,%20Deyang&rft.date=2023-05-12&rft.volume=267&rft.spage=110390&rft.pages=110390-&rft.artnum=110390&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2023.110390&rft_dat=%3Celsevier_cross%3ES0950705123001405%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-cfd9d81c4976f720ebeb023ff3965c82f9708930dffd0dc8a521889a692bac2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true