Loading…

Document-level relation extraction with global and path dependencies

Document-level relation extraction (RE) focuses on extracting relations for each entity pair in the same sentence or across different sentences of a document. Several existing methodologies aim to capture the intricate interactions among entities across a document by constructing diverse document gr...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems 2024-04, Vol.289, p.111545, Article 111545
Main Authors: Jia, Wei, Ma, Ruizhe, Yan, Li, Niu, Weinan, Ma, Zongmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c255t-a46b6d9a9abb8af4d7d2b495529574d8b53359c9da13f03c951e2b15e887cd7d3
container_end_page
container_issue
container_start_page 111545
container_title Knowledge-based systems
container_volume 289
creator Jia, Wei
Ma, Ruizhe
Yan, Li
Niu, Weinan
Ma, Zongmin
description Document-level relation extraction (RE) focuses on extracting relations for each entity pair in the same sentence or across different sentences of a document. Several existing methodologies aim to capture the intricate interactions among entities across a document by constructing diverse document graphs. However, these graphs frequently cannot sufficiently model the intricate global interactions and concurrent explicit path reasoning. Therefore, we introduce a distinctive graph-based model designed to assimilate global and path dependencies within a document for document-level RE, termed graph-based global and path dependencies (GGP). Specifically, the global dependency component captures interactions between mentions, entities, sentences and, the document through two interconnected graphs: the mention-level graph and the entity-level graph (ELG). To integrate relevant paths essential for the designated entity pair, the path dependency component consolidates information from various multi-hop paths of the target entity pair through an attention mechanism on the ELG. In addition, we devised an innovative method for learning path representation, which encapsulates relations and intermediate entities within the multi-hop path in the ELG. Comprehensive experiments conducted on standard document-level RE and CDR datasets reveal the following key findings: (i) GGP achieves an Ign F1 score of 59.98%, surpassing baselines by 0.61% on the test set; and (ii) the integration of various features derived from entities, sentences, documents, and paths enhances GGP's performance in document-level RE.
doi_str_mv 10.1016/j.knosys.2024.111545
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_knosys_2024_111545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705124001801</els_id><sourcerecordid>S0950705124001801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-a46b6d9a9abb8af4d7d2b495529574d8b53359c9da13f03c951e2b15e887cd7d3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhzyAgm2403iCxJqoSBV4gJnyz8bcEmdyg6Fvj0p4cxpdqSd0egj5JrRglFW3WyKj9CnQyo45aJgjIGAEzJjTc3zWlB5SmZUAs1rCuycXKS0oZRyzpoZWS57-7nFMOQd7rHLInZ68H3I8HuI2v6eX354z9663ugu08FlOz16hzsMDoP1mC7JWau7hFd_OievD_cvi8d8_bx6Wtytc8sBhlyLylROaqmNaXQrXO24ERKAS6iFawyUJUgrnWZlS0srgSE3DLBpajs-l3Mipl4b-5QitmoX_VbHg2JUHUmojZpIqCMJNZEYY7dTDMdte49RpXF1sOh8RDso1_v_C34AFTpqUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Document-level relation extraction with global and path dependencies</title><source>Elsevier</source><creator>Jia, Wei ; Ma, Ruizhe ; Yan, Li ; Niu, Weinan ; Ma, Zongmin</creator><creatorcontrib>Jia, Wei ; Ma, Ruizhe ; Yan, Li ; Niu, Weinan ; Ma, Zongmin</creatorcontrib><description>Document-level relation extraction (RE) focuses on extracting relations for each entity pair in the same sentence or across different sentences of a document. Several existing methodologies aim to capture the intricate interactions among entities across a document by constructing diverse document graphs. However, these graphs frequently cannot sufficiently model the intricate global interactions and concurrent explicit path reasoning. Therefore, we introduce a distinctive graph-based model designed to assimilate global and path dependencies within a document for document-level RE, termed graph-based global and path dependencies (GGP). Specifically, the global dependency component captures interactions between mentions, entities, sentences and, the document through two interconnected graphs: the mention-level graph and the entity-level graph (ELG). To integrate relevant paths essential for the designated entity pair, the path dependency component consolidates information from various multi-hop paths of the target entity pair through an attention mechanism on the ELG. In addition, we devised an innovative method for learning path representation, which encapsulates relations and intermediate entities within the multi-hop path in the ELG. Comprehensive experiments conducted on standard document-level RE and CDR datasets reveal the following key findings: (i) GGP achieves an Ign F1 score of 59.98%, surpassing baselines by 0.61% on the test set; and (ii) the integration of various features derived from entities, sentences, documents, and paths enhances GGP's performance in document-level RE.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2024.111545</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Global dependency ; Multi-hop path ; Path representation ; Relation extraction</subject><ispartof>Knowledge-based systems, 2024-04, Vol.289, p.111545, Article 111545</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-a46b6d9a9abb8af4d7d2b495529574d8b53359c9da13f03c951e2b15e887cd7d3</cites><orcidid>0000-0001-7780-6473 ; 0000-0003-2749-3063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Ma, Ruizhe</creatorcontrib><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Niu, Weinan</creatorcontrib><creatorcontrib>Ma, Zongmin</creatorcontrib><title>Document-level relation extraction with global and path dependencies</title><title>Knowledge-based systems</title><description>Document-level relation extraction (RE) focuses on extracting relations for each entity pair in the same sentence or across different sentences of a document. Several existing methodologies aim to capture the intricate interactions among entities across a document by constructing diverse document graphs. However, these graphs frequently cannot sufficiently model the intricate global interactions and concurrent explicit path reasoning. Therefore, we introduce a distinctive graph-based model designed to assimilate global and path dependencies within a document for document-level RE, termed graph-based global and path dependencies (GGP). Specifically, the global dependency component captures interactions between mentions, entities, sentences and, the document through two interconnected graphs: the mention-level graph and the entity-level graph (ELG). To integrate relevant paths essential for the designated entity pair, the path dependency component consolidates information from various multi-hop paths of the target entity pair through an attention mechanism on the ELG. In addition, we devised an innovative method for learning path representation, which encapsulates relations and intermediate entities within the multi-hop path in the ELG. Comprehensive experiments conducted on standard document-level RE and CDR datasets reveal the following key findings: (i) GGP achieves an Ign F1 score of 59.98%, surpassing baselines by 0.61% on the test set; and (ii) the integration of various features derived from entities, sentences, documents, and paths enhances GGP's performance in document-level RE.</description><subject>Global dependency</subject><subject>Multi-hop path</subject><subject>Path representation</subject><subject>Relation extraction</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhzyAgm2403iCxJqoSBV4gJnyz8bcEmdyg6Fvj0p4cxpdqSd0egj5JrRglFW3WyKj9CnQyo45aJgjIGAEzJjTc3zWlB5SmZUAs1rCuycXKS0oZRyzpoZWS57-7nFMOQd7rHLInZ68H3I8HuI2v6eX354z9663ugu08FlOz16hzsMDoP1mC7JWau7hFd_OievD_cvi8d8_bx6Wtytc8sBhlyLylROaqmNaXQrXO24ERKAS6iFawyUJUgrnWZlS0srgSE3DLBpajs-l3Mipl4b-5QitmoX_VbHg2JUHUmojZpIqCMJNZEYY7dTDMdte49RpXF1sOh8RDso1_v_C34AFTpqUQ</recordid><startdate>20240408</startdate><enddate>20240408</enddate><creator>Jia, Wei</creator><creator>Ma, Ruizhe</creator><creator>Yan, Li</creator><creator>Niu, Weinan</creator><creator>Ma, Zongmin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7780-6473</orcidid><orcidid>https://orcid.org/0000-0003-2749-3063</orcidid></search><sort><creationdate>20240408</creationdate><title>Document-level relation extraction with global and path dependencies</title><author>Jia, Wei ; Ma, Ruizhe ; Yan, Li ; Niu, Weinan ; Ma, Zongmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-a46b6d9a9abb8af4d7d2b495529574d8b53359c9da13f03c951e2b15e887cd7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Global dependency</topic><topic>Multi-hop path</topic><topic>Path representation</topic><topic>Relation extraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Ma, Ruizhe</creatorcontrib><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Niu, Weinan</creatorcontrib><creatorcontrib>Ma, Zongmin</creatorcontrib><collection>CrossRef</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Wei</au><au>Ma, Ruizhe</au><au>Yan, Li</au><au>Niu, Weinan</au><au>Ma, Zongmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Document-level relation extraction with global and path dependencies</atitle><jtitle>Knowledge-based systems</jtitle><date>2024-04-08</date><risdate>2024</risdate><volume>289</volume><spage>111545</spage><pages>111545-</pages><artnum>111545</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Document-level relation extraction (RE) focuses on extracting relations for each entity pair in the same sentence or across different sentences of a document. Several existing methodologies aim to capture the intricate interactions among entities across a document by constructing diverse document graphs. However, these graphs frequently cannot sufficiently model the intricate global interactions and concurrent explicit path reasoning. Therefore, we introduce a distinctive graph-based model designed to assimilate global and path dependencies within a document for document-level RE, termed graph-based global and path dependencies (GGP). Specifically, the global dependency component captures interactions between mentions, entities, sentences and, the document through two interconnected graphs: the mention-level graph and the entity-level graph (ELG). To integrate relevant paths essential for the designated entity pair, the path dependency component consolidates information from various multi-hop paths of the target entity pair through an attention mechanism on the ELG. In addition, we devised an innovative method for learning path representation, which encapsulates relations and intermediate entities within the multi-hop path in the ELG. Comprehensive experiments conducted on standard document-level RE and CDR datasets reveal the following key findings: (i) GGP achieves an Ign F1 score of 59.98%, surpassing baselines by 0.61% on the test set; and (ii) the integration of various features derived from entities, sentences, documents, and paths enhances GGP's performance in document-level RE.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2024.111545</doi><orcidid>https://orcid.org/0000-0001-7780-6473</orcidid><orcidid>https://orcid.org/0000-0003-2749-3063</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2024-04, Vol.289, p.111545, Article 111545
issn 0950-7051
1872-7409
language eng
recordid cdi_crossref_primary_10_1016_j_knosys_2024_111545
source Elsevier
subjects Global dependency
Multi-hop path
Path representation
Relation extraction
title Document-level relation extraction with global and path dependencies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Document-level%20relation%20extraction%20with%20global%20and%20path%20dependencies&rft.jtitle=Knowledge-based%20systems&rft.au=Jia,%20Wei&rft.date=2024-04-08&rft.volume=289&rft.spage=111545&rft.pages=111545-&rft.artnum=111545&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2024.111545&rft_dat=%3Celsevier_cross%3ES0950705124001801%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-a46b6d9a9abb8af4d7d2b495529574d8b53359c9da13f03c951e2b15e887cd7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true