Loading…
KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction
Understanding and predicting the bug type is crucial for developers striving to enhance testing efficiency and reduce software release problems. Bug reports, although semi-structured, contain valuable semantic information, making their comprehension critical for accurate bug prediction. Recent advan...
Saved in:
Published in: | Knowledge-based systems 2024-12, Vol.305, p.112588, Article 112588 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c185t-73bf873fd67b9f860ea8ad4eafed5120e8d2b5c02f7a6b8d66d8797f5bbc2a133 |
container_end_page | |
container_issue | |
container_start_page | 112588 |
container_title | Knowledge-based systems |
container_volume | 305 |
creator | Li, Chenglong Zheng, Zheng Du, Xiaoting Ma, Xiangyue Wang, Zhengqi Li, Xinheng |
description | Understanding and predicting the bug type is crucial for developers striving to enhance testing efficiency and reduce software release problems. Bug reports, although semi-structured, contain valuable semantic information, making their comprehension critical for accurate bug prediction. Recent advances in large language models (LLMs), especially generative LLMs, have demonstrated their power in natural language processing. Many studies have utilized these models to understand various forms of textual data. However, the capability of LLMs to fully understand bug reports remains uncertain. To tackle this challenge, we propose KnowBug, a framework designed to augment LLMs with knowledge from bug reports to improve their ability to predict bug types. In this framework, we utilize bug reports from open-source deep learning frameworks, design specialized prompts, and fine-tune LLMs to assess KnowBug’s proficiency in understanding bug reports and predicting different bug types. |
doi_str_mv | 10.1016/j.knosys.2024.112588 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_knosys_2024_112588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095070512401222X</els_id><sourcerecordid>S095070512401222X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-73bf873fd67b9f860ea8ad4eafed5120e8d2b5c02f7a6b8d66d8797f5bbc2a133</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhj2ARCm8AYNfIMF2msRlQIKqFEQlFpgtxz6nbhM7slOivj0pYWa6G-7_7u5D6I6SlBJa3O_Tg_PxFFNG2CKllOWcX6AZWeYkKUlOr9B1jHtCCGOUz1D77vzwfKwf8NrtpFPW1XgrQw24ka4-yrFpvYYm4sH2O1wdaxyg86HH45qhAT0OGB-wBuhwAzK4M8EE2cLgw-E30AXQVvXWuxt0aWQT4favztHXy_pz9ZpsPzZvq6dtoijP-6TMKsPLzOiirJaGFwQkl3oB0oDOKSPANatyRZgpZVFxXRSal8vS5FWlmKRZNkeLiauCjzGAEV2wrQwnQYk4axJ7MWkSZ01i0jTGHqfY-C98WwgiKgtOjecHUL3Q3v4P-AEKg3g4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction</title><source>ScienceDirect Journals</source><creator>Li, Chenglong ; Zheng, Zheng ; Du, Xiaoting ; Ma, Xiangyue ; Wang, Zhengqi ; Li, Xinheng</creator><creatorcontrib>Li, Chenglong ; Zheng, Zheng ; Du, Xiaoting ; Ma, Xiangyue ; Wang, Zhengqi ; Li, Xinheng</creatorcontrib><description>Understanding and predicting the bug type is crucial for developers striving to enhance testing efficiency and reduce software release problems. Bug reports, although semi-structured, contain valuable semantic information, making their comprehension critical for accurate bug prediction. Recent advances in large language models (LLMs), especially generative LLMs, have demonstrated their power in natural language processing. Many studies have utilized these models to understand various forms of textual data. However, the capability of LLMs to fully understand bug reports remains uncertain. To tackle this challenge, we propose KnowBug, a framework designed to augment LLMs with knowledge from bug reports to improve their ability to predict bug types. In this framework, we utilize bug reports from open-source deep learning frameworks, design specialized prompts, and fine-tune LLMs to assess KnowBug’s proficiency in understanding bug reports and predicting different bug types.</description><identifier>ISSN: 0950-7051</identifier><identifier>DOI: 10.1016/j.knosys.2024.112588</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bug prediction ; Bug report ; Deep learning framework ; Large language model</subject><ispartof>Knowledge-based systems, 2024-12, Vol.305, p.112588, Article 112588</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185t-73bf873fd67b9f860ea8ad4eafed5120e8d2b5c02f7a6b8d66d8797f5bbc2a133</cites><orcidid>0009-0008-1155-905X ; 0000-0001-5777-6828 ; 0009-0002-9585-3358 ; 0000-0002-1609-0480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Zheng, Zheng</creatorcontrib><creatorcontrib>Du, Xiaoting</creatorcontrib><creatorcontrib>Ma, Xiangyue</creatorcontrib><creatorcontrib>Wang, Zhengqi</creatorcontrib><creatorcontrib>Li, Xinheng</creatorcontrib><title>KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction</title><title>Knowledge-based systems</title><description>Understanding and predicting the bug type is crucial for developers striving to enhance testing efficiency and reduce software release problems. Bug reports, although semi-structured, contain valuable semantic information, making their comprehension critical for accurate bug prediction. Recent advances in large language models (LLMs), especially generative LLMs, have demonstrated their power in natural language processing. Many studies have utilized these models to understand various forms of textual data. However, the capability of LLMs to fully understand bug reports remains uncertain. To tackle this challenge, we propose KnowBug, a framework designed to augment LLMs with knowledge from bug reports to improve their ability to predict bug types. In this framework, we utilize bug reports from open-source deep learning frameworks, design specialized prompts, and fine-tune LLMs to assess KnowBug’s proficiency in understanding bug reports and predicting different bug types.</description><subject>Bug prediction</subject><subject>Bug report</subject><subject>Deep learning framework</subject><subject>Large language model</subject><issn>0950-7051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhj2ARCm8AYNfIMF2msRlQIKqFEQlFpgtxz6nbhM7slOivj0pYWa6G-7_7u5D6I6SlBJa3O_Tg_PxFFNG2CKllOWcX6AZWeYkKUlOr9B1jHtCCGOUz1D77vzwfKwf8NrtpFPW1XgrQw24ka4-yrFpvYYm4sH2O1wdaxyg86HH45qhAT0OGB-wBuhwAzK4M8EE2cLgw-E30AXQVvXWuxt0aWQT4favztHXy_pz9ZpsPzZvq6dtoijP-6TMKsPLzOiirJaGFwQkl3oB0oDOKSPANatyRZgpZVFxXRSal8vS5FWlmKRZNkeLiauCjzGAEV2wrQwnQYk4axJ7MWkSZ01i0jTGHqfY-C98WwgiKgtOjecHUL3Q3v4P-AEKg3g4</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Li, Chenglong</creator><creator>Zheng, Zheng</creator><creator>Du, Xiaoting</creator><creator>Ma, Xiangyue</creator><creator>Wang, Zhengqi</creator><creator>Li, Xinheng</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-1155-905X</orcidid><orcidid>https://orcid.org/0000-0001-5777-6828</orcidid><orcidid>https://orcid.org/0009-0002-9585-3358</orcidid><orcidid>https://orcid.org/0000-0002-1609-0480</orcidid></search><sort><creationdate>20241203</creationdate><title>KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction</title><author>Li, Chenglong ; Zheng, Zheng ; Du, Xiaoting ; Ma, Xiangyue ; Wang, Zhengqi ; Li, Xinheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-73bf873fd67b9f860ea8ad4eafed5120e8d2b5c02f7a6b8d66d8797f5bbc2a133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bug prediction</topic><topic>Bug report</topic><topic>Deep learning framework</topic><topic>Large language model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Zheng, Zheng</creatorcontrib><creatorcontrib>Du, Xiaoting</creatorcontrib><creatorcontrib>Ma, Xiangyue</creatorcontrib><creatorcontrib>Wang, Zhengqi</creatorcontrib><creatorcontrib>Li, Xinheng</creatorcontrib><collection>CrossRef</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chenglong</au><au>Zheng, Zheng</au><au>Du, Xiaoting</au><au>Ma, Xiangyue</au><au>Wang, Zhengqi</au><au>Li, Xinheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction</atitle><jtitle>Knowledge-based systems</jtitle><date>2024-12-03</date><risdate>2024</risdate><volume>305</volume><spage>112588</spage><pages>112588-</pages><artnum>112588</artnum><issn>0950-7051</issn><abstract>Understanding and predicting the bug type is crucial for developers striving to enhance testing efficiency and reduce software release problems. Bug reports, although semi-structured, contain valuable semantic information, making their comprehension critical for accurate bug prediction. Recent advances in large language models (LLMs), especially generative LLMs, have demonstrated their power in natural language processing. Many studies have utilized these models to understand various forms of textual data. However, the capability of LLMs to fully understand bug reports remains uncertain. To tackle this challenge, we propose KnowBug, a framework designed to augment LLMs with knowledge from bug reports to improve their ability to predict bug types. In this framework, we utilize bug reports from open-source deep learning frameworks, design specialized prompts, and fine-tune LLMs to assess KnowBug’s proficiency in understanding bug reports and predicting different bug types.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2024.112588</doi><orcidid>https://orcid.org/0009-0008-1155-905X</orcidid><orcidid>https://orcid.org/0000-0001-5777-6828</orcidid><orcidid>https://orcid.org/0009-0002-9585-3358</orcidid><orcidid>https://orcid.org/0000-0002-1609-0480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2024-12, Vol.305, p.112588, Article 112588 |
issn | 0950-7051 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_knosys_2024_112588 |
source | ScienceDirect Journals |
subjects | Bug prediction Bug report Deep learning framework Large language model |
title | KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KnowBug:%20Enhancing%20Large%20language%20models%20with%20bug%20report%20knowledge%20for%20deep%20learning%20framework%20bug%20prediction&rft.jtitle=Knowledge-based%20systems&rft.au=Li,%20Chenglong&rft.date=2024-12-03&rft.volume=305&rft.spage=112588&rft.pages=112588-&rft.artnum=112588&rft.issn=0950-7051&rft_id=info:doi/10.1016/j.knosys.2024.112588&rft_dat=%3Celsevier_cross%3ES095070512401222X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c185t-73bf873fd67b9f860ea8ad4eafed5120e8d2b5c02f7a6b8d66d8797f5bbc2a133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |