Loading…

KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction

Understanding and predicting the bug type is crucial for developers striving to enhance testing efficiency and reduce software release problems. Bug reports, although semi-structured, contain valuable semantic information, making their comprehension critical for accurate bug prediction. Recent advan...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems 2024-12, Vol.305, p.112588, Article 112588
Main Authors: Li, Chenglong, Zheng, Zheng, Du, Xiaoting, Ma, Xiangyue, Wang, Zhengqi, Li, Xinheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c185t-73bf873fd67b9f860ea8ad4eafed5120e8d2b5c02f7a6b8d66d8797f5bbc2a133
container_end_page
container_issue
container_start_page 112588
container_title Knowledge-based systems
container_volume 305
creator Li, Chenglong
Zheng, Zheng
Du, Xiaoting
Ma, Xiangyue
Wang, Zhengqi
Li, Xinheng
description Understanding and predicting the bug type is crucial for developers striving to enhance testing efficiency and reduce software release problems. Bug reports, although semi-structured, contain valuable semantic information, making their comprehension critical for accurate bug prediction. Recent advances in large language models (LLMs), especially generative LLMs, have demonstrated their power in natural language processing. Many studies have utilized these models to understand various forms of textual data. However, the capability of LLMs to fully understand bug reports remains uncertain. To tackle this challenge, we propose KnowBug, a framework designed to augment LLMs with knowledge from bug reports to improve their ability to predict bug types. In this framework, we utilize bug reports from open-source deep learning frameworks, design specialized prompts, and fine-tune LLMs to assess KnowBug’s proficiency in understanding bug reports and predicting different bug types.
doi_str_mv 10.1016/j.knosys.2024.112588
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_knosys_2024_112588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095070512401222X</els_id><sourcerecordid>S095070512401222X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-73bf873fd67b9f860ea8ad4eafed5120e8d2b5c02f7a6b8d66d8797f5bbc2a133</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhj2ARCm8AYNfIMF2msRlQIKqFEQlFpgtxz6nbhM7slOivj0pYWa6G-7_7u5D6I6SlBJa3O_Tg_PxFFNG2CKllOWcX6AZWeYkKUlOr9B1jHtCCGOUz1D77vzwfKwf8NrtpFPW1XgrQw24ka4-yrFpvYYm4sH2O1wdaxyg86HH45qhAT0OGB-wBuhwAzK4M8EE2cLgw-E30AXQVvXWuxt0aWQT4favztHXy_pz9ZpsPzZvq6dtoijP-6TMKsPLzOiirJaGFwQkl3oB0oDOKSPANatyRZgpZVFxXRSal8vS5FWlmKRZNkeLiauCjzGAEV2wrQwnQYk4axJ7MWkSZ01i0jTGHqfY-C98WwgiKgtOjecHUL3Q3v4P-AEKg3g4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction</title><source>ScienceDirect Journals</source><creator>Li, Chenglong ; Zheng, Zheng ; Du, Xiaoting ; Ma, Xiangyue ; Wang, Zhengqi ; Li, Xinheng</creator><creatorcontrib>Li, Chenglong ; Zheng, Zheng ; Du, Xiaoting ; Ma, Xiangyue ; Wang, Zhengqi ; Li, Xinheng</creatorcontrib><description>Understanding and predicting the bug type is crucial for developers striving to enhance testing efficiency and reduce software release problems. Bug reports, although semi-structured, contain valuable semantic information, making their comprehension critical for accurate bug prediction. Recent advances in large language models (LLMs), especially generative LLMs, have demonstrated their power in natural language processing. Many studies have utilized these models to understand various forms of textual data. However, the capability of LLMs to fully understand bug reports remains uncertain. To tackle this challenge, we propose KnowBug, a framework designed to augment LLMs with knowledge from bug reports to improve their ability to predict bug types. In this framework, we utilize bug reports from open-source deep learning frameworks, design specialized prompts, and fine-tune LLMs to assess KnowBug’s proficiency in understanding bug reports and predicting different bug types.</description><identifier>ISSN: 0950-7051</identifier><identifier>DOI: 10.1016/j.knosys.2024.112588</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bug prediction ; Bug report ; Deep learning framework ; Large language model</subject><ispartof>Knowledge-based systems, 2024-12, Vol.305, p.112588, Article 112588</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185t-73bf873fd67b9f860ea8ad4eafed5120e8d2b5c02f7a6b8d66d8797f5bbc2a133</cites><orcidid>0009-0008-1155-905X ; 0000-0001-5777-6828 ; 0009-0002-9585-3358 ; 0000-0002-1609-0480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Zheng, Zheng</creatorcontrib><creatorcontrib>Du, Xiaoting</creatorcontrib><creatorcontrib>Ma, Xiangyue</creatorcontrib><creatorcontrib>Wang, Zhengqi</creatorcontrib><creatorcontrib>Li, Xinheng</creatorcontrib><title>KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction</title><title>Knowledge-based systems</title><description>Understanding and predicting the bug type is crucial for developers striving to enhance testing efficiency and reduce software release problems. Bug reports, although semi-structured, contain valuable semantic information, making their comprehension critical for accurate bug prediction. Recent advances in large language models (LLMs), especially generative LLMs, have demonstrated their power in natural language processing. Many studies have utilized these models to understand various forms of textual data. However, the capability of LLMs to fully understand bug reports remains uncertain. To tackle this challenge, we propose KnowBug, a framework designed to augment LLMs with knowledge from bug reports to improve their ability to predict bug types. In this framework, we utilize bug reports from open-source deep learning frameworks, design specialized prompts, and fine-tune LLMs to assess KnowBug’s proficiency in understanding bug reports and predicting different bug types.</description><subject>Bug prediction</subject><subject>Bug report</subject><subject>Deep learning framework</subject><subject>Large language model</subject><issn>0950-7051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhj2ARCm8AYNfIMF2msRlQIKqFEQlFpgtxz6nbhM7slOivj0pYWa6G-7_7u5D6I6SlBJa3O_Tg_PxFFNG2CKllOWcX6AZWeYkKUlOr9B1jHtCCGOUz1D77vzwfKwf8NrtpFPW1XgrQw24ka4-yrFpvYYm4sH2O1wdaxyg86HH45qhAT0OGB-wBuhwAzK4M8EE2cLgw-E30AXQVvXWuxt0aWQT4favztHXy_pz9ZpsPzZvq6dtoijP-6TMKsPLzOiirJaGFwQkl3oB0oDOKSPANatyRZgpZVFxXRSal8vS5FWlmKRZNkeLiauCjzGAEV2wrQwnQYk4axJ7MWkSZ01i0jTGHqfY-C98WwgiKgtOjecHUL3Q3v4P-AEKg3g4</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Li, Chenglong</creator><creator>Zheng, Zheng</creator><creator>Du, Xiaoting</creator><creator>Ma, Xiangyue</creator><creator>Wang, Zhengqi</creator><creator>Li, Xinheng</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-1155-905X</orcidid><orcidid>https://orcid.org/0000-0001-5777-6828</orcidid><orcidid>https://orcid.org/0009-0002-9585-3358</orcidid><orcidid>https://orcid.org/0000-0002-1609-0480</orcidid></search><sort><creationdate>20241203</creationdate><title>KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction</title><author>Li, Chenglong ; Zheng, Zheng ; Du, Xiaoting ; Ma, Xiangyue ; Wang, Zhengqi ; Li, Xinheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-73bf873fd67b9f860ea8ad4eafed5120e8d2b5c02f7a6b8d66d8797f5bbc2a133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bug prediction</topic><topic>Bug report</topic><topic>Deep learning framework</topic><topic>Large language model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Zheng, Zheng</creatorcontrib><creatorcontrib>Du, Xiaoting</creatorcontrib><creatorcontrib>Ma, Xiangyue</creatorcontrib><creatorcontrib>Wang, Zhengqi</creatorcontrib><creatorcontrib>Li, Xinheng</creatorcontrib><collection>CrossRef</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chenglong</au><au>Zheng, Zheng</au><au>Du, Xiaoting</au><au>Ma, Xiangyue</au><au>Wang, Zhengqi</au><au>Li, Xinheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction</atitle><jtitle>Knowledge-based systems</jtitle><date>2024-12-03</date><risdate>2024</risdate><volume>305</volume><spage>112588</spage><pages>112588-</pages><artnum>112588</artnum><issn>0950-7051</issn><abstract>Understanding and predicting the bug type is crucial for developers striving to enhance testing efficiency and reduce software release problems. Bug reports, although semi-structured, contain valuable semantic information, making their comprehension critical for accurate bug prediction. Recent advances in large language models (LLMs), especially generative LLMs, have demonstrated their power in natural language processing. Many studies have utilized these models to understand various forms of textual data. However, the capability of LLMs to fully understand bug reports remains uncertain. To tackle this challenge, we propose KnowBug, a framework designed to augment LLMs with knowledge from bug reports to improve their ability to predict bug types. In this framework, we utilize bug reports from open-source deep learning frameworks, design specialized prompts, and fine-tune LLMs to assess KnowBug’s proficiency in understanding bug reports and predicting different bug types.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2024.112588</doi><orcidid>https://orcid.org/0009-0008-1155-905X</orcidid><orcidid>https://orcid.org/0000-0001-5777-6828</orcidid><orcidid>https://orcid.org/0009-0002-9585-3358</orcidid><orcidid>https://orcid.org/0000-0002-1609-0480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2024-12, Vol.305, p.112588, Article 112588
issn 0950-7051
language eng
recordid cdi_crossref_primary_10_1016_j_knosys_2024_112588
source ScienceDirect Journals
subjects Bug prediction
Bug report
Deep learning framework
Large language model
title KnowBug: Enhancing Large language models with bug report knowledge for deep learning framework bug prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KnowBug:%20Enhancing%20Large%20language%20models%20with%20bug%20report%20knowledge%20for%20deep%20learning%20framework%20bug%20prediction&rft.jtitle=Knowledge-based%20systems&rft.au=Li,%20Chenglong&rft.date=2024-12-03&rft.volume=305&rft.spage=112588&rft.pages=112588-&rft.artnum=112588&rft.issn=0950-7051&rft_id=info:doi/10.1016/j.knosys.2024.112588&rft_dat=%3Celsevier_cross%3ES095070512401222X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c185t-73bf873fd67b9f860ea8ad4eafed5120e8d2b5c02f7a6b8d66d8797f5bbc2a133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true