Loading…
Bias-corrected AIC for selecting variables in multinomial logistic regression models
In this paper, we consider the bias correction of Akaike’s information criterion (AIC) for selecting variables in multinomial logistic regression models. For simplifying a formula of the bias-corrected AIC, we calculate the bias of the AIC to a risk function through the expectations of partial deriv...
Saved in:
Published in: | Linear algebra and its applications 2012-06, Vol.436 (11), p.4329-4341 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we consider the bias correction of Akaike’s information criterion (AIC) for selecting variables in multinomial logistic regression models. For simplifying a formula of the bias-corrected AIC, we calculate the bias of the AIC to a risk function through the expectations of partial derivatives of the negative log-likelihood function. As a result, we can express the bias correction term of the bias-corrected AIC with only three matrices consisting of the second, third, and fourth derivatives of the negative log-likelihood function. By conducting numerical studies, we verify that the proposed bias-corrected AIC performs better than the crude AIC. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2012.01.018 |