Loading…

Syn-orogenic magmatism over 100 m.y. in high crustal levels of the central Grenville Province: Characteristics, age and tectonic significance

The Escoumins Supracrustal Belt (ESB) represents higher levels of the infrastructure of a large hot orogen, exposed in a broadly dome and basin pattern. It consists of remnants of a Pinwarian-age (1.52–1.46 Ga) oceanic arc and arc-rift sequence, preserved in the low-P Belt of the central Grenville P...

Full description

Saved in:
Bibliographic Details
Published in:Lithos 2018-07, Vol.312-313, p.128-152
Main Authors: Groulier, Pierre-Arthur, Indares, Aphrodite, Dunning, Gregory, Moukhsil, Abdelali, Jenner, George
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Escoumins Supracrustal Belt (ESB) represents higher levels of the infrastructure of a large hot orogen, exposed in a broadly dome and basin pattern. It consists of remnants of a Pinwarian-age (1.52–1.46 Ga) oceanic arc and arc-rift sequence, preserved in the low-P Belt of the central Grenville Province, and was intruded by diverse Grenvillian-age plutons. The plutonic rocks range from quartz monzodiorite to granite and have intrusion ages covering a time interval of ~100 My, that represents the entire range of the Grenvillian orogeny. Moreover, the ages, field relations and geochemical signatures of the different intrusions can be matched with different documented stages of the orogeny. The oldest pluton, the magnesian, biotite-bearing Bon-Désir granite (1086 ± 2 Ma), has positive εNd (+0.6), TDM = 1.52 Ga, and is attributed to melting of a juvenile Pinwarian crust as a result of slab break-off, at the onset of continental collision. The ferroan and Ba–Sr enriched, biotite-, amphibole- and clinopyroxene-bearing Michaud plutonic suite (1063 ± 3 Ma) and biotite-rich felsic sill (1045 ± 3 Ma) have εNd (−0.01 − +0.8) and TDM = 1.45–1.48 Ga. Their geochemistry is consistent with fractionation of a mafic magma derived from melting of a Geon 14 subduction-modified subcontinental lithospheric mantle. This magmatism is consistent with convective thinning of subcontinental lithosphere, potentially linked to tectonic extrusion and orogenic collapse. This collapse ultimately led to the juxtaposition of the low-P Belt with the high-T mid-P Belt in the hinterland of the Grenville Province and to amphibolite-facies metamorphism in the former, producing metamorphic zircon overgrowths at 1037 ± 10 Ma. Finally, 988 ± 5 Ma to 983 ± 5 Ma syn-kinematic peraluminous two-mica garnetiferous leucogranite bodies and pegmatites with inherited 1055 ± 2 Ma metamorphic monazite were derived from melting of previously metamorphosed deeper levels of the low-P Belt. This is consistent with a high geothermal gradient linked to thinning of the crust in a Basin and Range setting. The geochemical and age pattern of Grenvillian-age magmatism in the ESB, in conjunction with the overall architecture of the Province, suggests that Laurentia was the upper plate during the Grenvillian orogeny. •Protracted syn-orogenic magmatism in the upper infrastructure of the Grenville Province•High geothermal gradient due to asthenospheric upwelling and possibly lithospheric mantle melting•Laurentian in an
ISSN:0024-4937
1872-6143
DOI:10.1016/j.lithos.2018.04.025