Loading…
Sedimentary records of bulk organic matter and lipid biomarkers in the Bering Sea: A centennial perspective of sea-ice variability and phytoplankton community
In this study, organic geochemical analyses of two sediment cores (BL16 and LV63–23) recovered from the western Bering Sea were carried out to examine the sea-ice variability and its relationship to phytoplankton community evolution over the past century. Bulk stable organic carbon isotopic composit...
Saved in:
Published in: | Marine geology 2020-11, Vol.429, p.106308, Article 106308 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, organic geochemical analyses of two sediment cores (BL16 and LV63–23) recovered from the western Bering Sea were carried out to examine the sea-ice variability and its relationship to phytoplankton community evolution over the past century. Bulk stable organic carbon isotopic composition (δ13CTOC) showed pronounced depletion on the northern shelf since the late 1970s, indicating greater terrigenous organic matter (OM) under warming during recent decades. Variation in sedimentary OM in the southward core was closely associated with marine primary productivity and regional deposition processes. Arctic sea-ice proxy IP25 throughout the two cores with different temporal profile patterns demonstrated sea-ice presence with the spatio-temporal variability across the study area over the past century. The phytoplankton marker-IP25 index (PIP25), a proxy for estimating semi-quantitatively sea-ice concentrations, reflected a decreased sea-ice cover with more distinct interannual fluctuations between 0.7 and 0.2 (especially in core BL16) after the late 1970s, coinciding with the recent warming scenario. Increased concentrations of phytoplankton biomarkers (brassicasterol and dinosterol) and their ratios as well as the PIP25 record in core BL16 indicated a synchronous variability of reduced sea-ice cover with the enhancement of phytoplankton productivity since the late 1970s. These results suggested a coupled interaction of the sea-ice condition and planktonic ecosystem in the north Bering shelf. Our results also revealed recent (since the 2000s) spatial heterogeneity in sea-ice coverage between the northern and southern parts of the Bering Sea.
•Sediment OM may be related to primary productivity and regional depositional processes.•IP25 and PIP25 were used to confirm spatiotemporal variability in the formation of seasonal sea ice cover.•Recent coupled interactions of sea ice conditions and ecosystem responses were reconstructed.•Sea ice coverage was spatially heterogeneous in relation to phytoplankton community dynamics. |
---|---|
ISSN: | 0025-3227 1872-6151 |
DOI: | 10.1016/j.margeo.2020.106308 |