Loading…

Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells

Quantitative microstructural interpretations were carried out without human involvement through an integrated combination of deep learning and focused ion beam-scanning electron microscopy (FIB-SEM) analytics on Ni/Y2O3-stabilized ZrO2 (Ni/YSZ) cermets. The Ni/YSZ/pore composites were analyzed for t...

Full description

Saved in:
Bibliographic Details
Published in:Materials characterization 2021-02, Vol.172, p.110906, Article 110906
Main Authors: Hwang, Heesu, Ahn, Junsung, Lee, Hyunbae, Oh, Jiwon, Kim, Jaehwan, Ahn, Jae-Pyeong, Kim, Hong-Kyu, Lee, Jong-Ho, Yoon, Young, Hwang, Jin-Ha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3
cites cdi_FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3
container_end_page
container_issue
container_start_page 110906
container_title Materials characterization
container_volume 172
creator Hwang, Heesu
Ahn, Junsung
Lee, Hyunbae
Oh, Jiwon
Kim, Jaehwan
Ahn, Jae-Pyeong
Kim, Hong-Kyu
Lee, Jong-Ho
Yoon, Young
Hwang, Jin-Ha
description Quantitative microstructural interpretations were carried out without human involvement through an integrated combination of deep learning and focused ion beam-scanning electron microscopy (FIB-SEM) analytics on Ni/Y2O3-stabilized ZrO2 (Ni/YSZ) cermets. The Ni/YSZ/pore composites were analyzed for the automated extraction of microstructural parameters to prevent the subjective analysis problems and unavoidable artifacts frequently encountered in lengthy image processing tasks and eliminate biased evaluations. Considering the high volume of image data and future expectations for electron microscopy usage, FIB-SEM was efficiently combined with semantic segmentation. Traditional image processing analysis tools are combined with phase separation predictions by semantic segmentation algorithms, leading to a quantitative evaluation of microstructural parameters. The combined strategy enables one to significantly enhance poor image quality originating from artifacts in electron microscopy, including charging effects, curtain effects, out-of-focus problems, and unclear phase boundaries encountered in searching for high-efficiency solid oxide fuel cells (SOFCs). •Semantic segmentation was applied to image-based phase identification in SOFCs.•Microstructural quantification was made using deep learning-predicted images.•The stereological approach was synergistically combined with semantic segmentation.
doi_str_mv 10.1016/j.matchar.2021.110906
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_matchar_2021_110906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S104458032100036X</els_id><sourcerecordid>S104458032100036X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuPIOQFZpo0k0yyEqm_UHShLnQTYnKjKZlJSaZi394p7d7VPdzDORw-hC4pqSmhYraqOzPYb5PrOZnTmlKiiDhCEypbVjVUquNRk6apuCTsFJ2VsiKECEnbCYIbgDWOYHIf-q_KlBLKAA53weZUhryxwyabiE1v4nb0cPL4KczeXz7GV3KAberWqYQBCvYp45JicDj9htHyG4jYQozlHJ14EwtcHO4Uvd3dvi4equXz_ePiellZRtRQ8cbPjbTCMdlIRwVviPlUXDDnPTccuLWCGmVYI61qmRNCcBDEK9WCoMywKeL73t34ksHrdQ6dyVtNid6x0it9YKV3rPSe1Zi72udgHPcTIOtiA_QWXMhgB-1S-KfhD537dpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells</title><source>Elsevier</source><creator>Hwang, Heesu ; Ahn, Junsung ; Lee, Hyunbae ; Oh, Jiwon ; Kim, Jaehwan ; Ahn, Jae-Pyeong ; Kim, Hong-Kyu ; Lee, Jong-Ho ; Yoon, Young ; Hwang, Jin-Ha</creator><creatorcontrib>Hwang, Heesu ; Ahn, Junsung ; Lee, Hyunbae ; Oh, Jiwon ; Kim, Jaehwan ; Ahn, Jae-Pyeong ; Kim, Hong-Kyu ; Lee, Jong-Ho ; Yoon, Young ; Hwang, Jin-Ha</creatorcontrib><description>Quantitative microstructural interpretations were carried out without human involvement through an integrated combination of deep learning and focused ion beam-scanning electron microscopy (FIB-SEM) analytics on Ni/Y2O3-stabilized ZrO2 (Ni/YSZ) cermets. The Ni/YSZ/pore composites were analyzed for the automated extraction of microstructural parameters to prevent the subjective analysis problems and unavoidable artifacts frequently encountered in lengthy image processing tasks and eliminate biased evaluations. Considering the high volume of image data and future expectations for electron microscopy usage, FIB-SEM was efficiently combined with semantic segmentation. Traditional image processing analysis tools are combined with phase separation predictions by semantic segmentation algorithms, leading to a quantitative evaluation of microstructural parameters. The combined strategy enables one to significantly enhance poor image quality originating from artifacts in electron microscopy, including charging effects, curtain effects, out-of-focus problems, and unclear phase boundaries encountered in searching for high-efficiency solid oxide fuel cells (SOFCs). •Semantic segmentation was applied to image-based phase identification in SOFCs.•Microstructural quantification was made using deep learning-predicted images.•The stereological approach was synergistically combined with semantic segmentation.</description><identifier>ISSN: 1044-5803</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2021.110906</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Deep learning ; Microstructure features ; SOFC anode composites ; Stereology</subject><ispartof>Materials characterization, 2021-02, Vol.172, p.110906, Article 110906</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3</citedby><cites>FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hwang, Heesu</creatorcontrib><creatorcontrib>Ahn, Junsung</creatorcontrib><creatorcontrib>Lee, Hyunbae</creatorcontrib><creatorcontrib>Oh, Jiwon</creatorcontrib><creatorcontrib>Kim, Jaehwan</creatorcontrib><creatorcontrib>Ahn, Jae-Pyeong</creatorcontrib><creatorcontrib>Kim, Hong-Kyu</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Yoon, Young</creatorcontrib><creatorcontrib>Hwang, Jin-Ha</creatorcontrib><title>Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells</title><title>Materials characterization</title><description>Quantitative microstructural interpretations were carried out without human involvement through an integrated combination of deep learning and focused ion beam-scanning electron microscopy (FIB-SEM) analytics on Ni/Y2O3-stabilized ZrO2 (Ni/YSZ) cermets. The Ni/YSZ/pore composites were analyzed for the automated extraction of microstructural parameters to prevent the subjective analysis problems and unavoidable artifacts frequently encountered in lengthy image processing tasks and eliminate biased evaluations. Considering the high volume of image data and future expectations for electron microscopy usage, FIB-SEM was efficiently combined with semantic segmentation. Traditional image processing analysis tools are combined with phase separation predictions by semantic segmentation algorithms, leading to a quantitative evaluation of microstructural parameters. The combined strategy enables one to significantly enhance poor image quality originating from artifacts in electron microscopy, including charging effects, curtain effects, out-of-focus problems, and unclear phase boundaries encountered in searching for high-efficiency solid oxide fuel cells (SOFCs). •Semantic segmentation was applied to image-based phase identification in SOFCs.•Microstructural quantification was made using deep learning-predicted images.•The stereological approach was synergistically combined with semantic segmentation.</description><subject>Deep learning</subject><subject>Microstructure features</subject><subject>SOFC anode composites</subject><subject>Stereology</subject><issn>1044-5803</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuPIOQFZpo0k0yyEqm_UHShLnQTYnKjKZlJSaZi394p7d7VPdzDORw-hC4pqSmhYraqOzPYb5PrOZnTmlKiiDhCEypbVjVUquNRk6apuCTsFJ2VsiKECEnbCYIbgDWOYHIf-q_KlBLKAA53weZUhryxwyabiE1v4nb0cPL4KczeXz7GV3KAberWqYQBCvYp45JicDj9htHyG4jYQozlHJ14EwtcHO4Uvd3dvi4equXz_ePiellZRtRQ8cbPjbTCMdlIRwVviPlUXDDnPTccuLWCGmVYI61qmRNCcBDEK9WCoMywKeL73t34ksHrdQ6dyVtNid6x0it9YKV3rPSe1Zi72udgHPcTIOtiA_QWXMhgB-1S-KfhD537dpw</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Hwang, Heesu</creator><creator>Ahn, Junsung</creator><creator>Lee, Hyunbae</creator><creator>Oh, Jiwon</creator><creator>Kim, Jaehwan</creator><creator>Ahn, Jae-Pyeong</creator><creator>Kim, Hong-Kyu</creator><creator>Lee, Jong-Ho</creator><creator>Yoon, Young</creator><creator>Hwang, Jin-Ha</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202102</creationdate><title>Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells</title><author>Hwang, Heesu ; Ahn, Junsung ; Lee, Hyunbae ; Oh, Jiwon ; Kim, Jaehwan ; Ahn, Jae-Pyeong ; Kim, Hong-Kyu ; Lee, Jong-Ho ; Yoon, Young ; Hwang, Jin-Ha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Microstructure features</topic><topic>SOFC anode composites</topic><topic>Stereology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Heesu</creatorcontrib><creatorcontrib>Ahn, Junsung</creatorcontrib><creatorcontrib>Lee, Hyunbae</creatorcontrib><creatorcontrib>Oh, Jiwon</creatorcontrib><creatorcontrib>Kim, Jaehwan</creatorcontrib><creatorcontrib>Ahn, Jae-Pyeong</creatorcontrib><creatorcontrib>Kim, Hong-Kyu</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Yoon, Young</creatorcontrib><creatorcontrib>Hwang, Jin-Ha</creatorcontrib><collection>CrossRef</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Heesu</au><au>Ahn, Junsung</au><au>Lee, Hyunbae</au><au>Oh, Jiwon</au><au>Kim, Jaehwan</au><au>Ahn, Jae-Pyeong</au><au>Kim, Hong-Kyu</au><au>Lee, Jong-Ho</au><au>Yoon, Young</au><au>Hwang, Jin-Ha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells</atitle><jtitle>Materials characterization</jtitle><date>2021-02</date><risdate>2021</risdate><volume>172</volume><spage>110906</spage><pages>110906-</pages><artnum>110906</artnum><issn>1044-5803</issn><eissn>1873-4189</eissn><abstract>Quantitative microstructural interpretations were carried out without human involvement through an integrated combination of deep learning and focused ion beam-scanning electron microscopy (FIB-SEM) analytics on Ni/Y2O3-stabilized ZrO2 (Ni/YSZ) cermets. The Ni/YSZ/pore composites were analyzed for the automated extraction of microstructural parameters to prevent the subjective analysis problems and unavoidable artifacts frequently encountered in lengthy image processing tasks and eliminate biased evaluations. Considering the high volume of image data and future expectations for electron microscopy usage, FIB-SEM was efficiently combined with semantic segmentation. Traditional image processing analysis tools are combined with phase separation predictions by semantic segmentation algorithms, leading to a quantitative evaluation of microstructural parameters. The combined strategy enables one to significantly enhance poor image quality originating from artifacts in electron microscopy, including charging effects, curtain effects, out-of-focus problems, and unclear phase boundaries encountered in searching for high-efficiency solid oxide fuel cells (SOFCs). •Semantic segmentation was applied to image-based phase identification in SOFCs.•Microstructural quantification was made using deep learning-predicted images.•The stereological approach was synergistically combined with semantic segmentation.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2021.110906</doi></addata></record>
fulltext fulltext
identifier ISSN: 1044-5803
ispartof Materials characterization, 2021-02, Vol.172, p.110906, Article 110906
issn 1044-5803
1873-4189
language eng
recordid cdi_crossref_primary_10_1016_j_matchar_2021_110906
source Elsevier
subjects Deep learning
Microstructure features
SOFC anode composites
Stereology
title Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-assisted%20microstructural%20analysis%20of%20Ni/YSZ%20anode%20composites%20for%20solid%20oxide%20fuel%20cells&rft.jtitle=Materials%20characterization&rft.au=Hwang,%20Heesu&rft.date=2021-02&rft.volume=172&rft.spage=110906&rft.pages=110906-&rft.artnum=110906&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2021.110906&rft_dat=%3Celsevier_cross%3ES104458032100036X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true