Loading…
Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells
Quantitative microstructural interpretations were carried out without human involvement through an integrated combination of deep learning and focused ion beam-scanning electron microscopy (FIB-SEM) analytics on Ni/Y2O3-stabilized ZrO2 (Ni/YSZ) cermets. The Ni/YSZ/pore composites were analyzed for t...
Saved in:
Published in: | Materials characterization 2021-02, Vol.172, p.110906, Article 110906 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3 |
container_end_page | |
container_issue | |
container_start_page | 110906 |
container_title | Materials characterization |
container_volume | 172 |
creator | Hwang, Heesu Ahn, Junsung Lee, Hyunbae Oh, Jiwon Kim, Jaehwan Ahn, Jae-Pyeong Kim, Hong-Kyu Lee, Jong-Ho Yoon, Young Hwang, Jin-Ha |
description | Quantitative microstructural interpretations were carried out without human involvement through an integrated combination of deep learning and focused ion beam-scanning electron microscopy (FIB-SEM) analytics on Ni/Y2O3-stabilized ZrO2 (Ni/YSZ) cermets. The Ni/YSZ/pore composites were analyzed for the automated extraction of microstructural parameters to prevent the subjective analysis problems and unavoidable artifacts frequently encountered in lengthy image processing tasks and eliminate biased evaluations. Considering the high volume of image data and future expectations for electron microscopy usage, FIB-SEM was efficiently combined with semantic segmentation. Traditional image processing analysis tools are combined with phase separation predictions by semantic segmentation algorithms, leading to a quantitative evaluation of microstructural parameters. The combined strategy enables one to significantly enhance poor image quality originating from artifacts in electron microscopy, including charging effects, curtain effects, out-of-focus problems, and unclear phase boundaries encountered in searching for high-efficiency solid oxide fuel cells (SOFCs).
•Semantic segmentation was applied to image-based phase identification in SOFCs.•Microstructural quantification was made using deep learning-predicted images.•The stereological approach was synergistically combined with semantic segmentation. |
doi_str_mv | 10.1016/j.matchar.2021.110906 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_matchar_2021_110906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S104458032100036X</els_id><sourcerecordid>S104458032100036X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuPIOQFZpo0k0yyEqm_UHShLnQTYnKjKZlJSaZi394p7d7VPdzDORw-hC4pqSmhYraqOzPYb5PrOZnTmlKiiDhCEypbVjVUquNRk6apuCTsFJ2VsiKECEnbCYIbgDWOYHIf-q_KlBLKAA53weZUhryxwyabiE1v4nb0cPL4KczeXz7GV3KAberWqYQBCvYp45JicDj9htHyG4jYQozlHJ14EwtcHO4Uvd3dvi4equXz_ePiellZRtRQ8cbPjbTCMdlIRwVviPlUXDDnPTccuLWCGmVYI61qmRNCcBDEK9WCoMywKeL73t34ksHrdQ6dyVtNid6x0it9YKV3rPSe1Zi72udgHPcTIOtiA_QWXMhgB-1S-KfhD537dpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells</title><source>Elsevier</source><creator>Hwang, Heesu ; Ahn, Junsung ; Lee, Hyunbae ; Oh, Jiwon ; Kim, Jaehwan ; Ahn, Jae-Pyeong ; Kim, Hong-Kyu ; Lee, Jong-Ho ; Yoon, Young ; Hwang, Jin-Ha</creator><creatorcontrib>Hwang, Heesu ; Ahn, Junsung ; Lee, Hyunbae ; Oh, Jiwon ; Kim, Jaehwan ; Ahn, Jae-Pyeong ; Kim, Hong-Kyu ; Lee, Jong-Ho ; Yoon, Young ; Hwang, Jin-Ha</creatorcontrib><description>Quantitative microstructural interpretations were carried out without human involvement through an integrated combination of deep learning and focused ion beam-scanning electron microscopy (FIB-SEM) analytics on Ni/Y2O3-stabilized ZrO2 (Ni/YSZ) cermets. The Ni/YSZ/pore composites were analyzed for the automated extraction of microstructural parameters to prevent the subjective analysis problems and unavoidable artifacts frequently encountered in lengthy image processing tasks and eliminate biased evaluations. Considering the high volume of image data and future expectations for electron microscopy usage, FIB-SEM was efficiently combined with semantic segmentation. Traditional image processing analysis tools are combined with phase separation predictions by semantic segmentation algorithms, leading to a quantitative evaluation of microstructural parameters. The combined strategy enables one to significantly enhance poor image quality originating from artifacts in electron microscopy, including charging effects, curtain effects, out-of-focus problems, and unclear phase boundaries encountered in searching for high-efficiency solid oxide fuel cells (SOFCs).
•Semantic segmentation was applied to image-based phase identification in SOFCs.•Microstructural quantification was made using deep learning-predicted images.•The stereological approach was synergistically combined with semantic segmentation.</description><identifier>ISSN: 1044-5803</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2021.110906</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Deep learning ; Microstructure features ; SOFC anode composites ; Stereology</subject><ispartof>Materials characterization, 2021-02, Vol.172, p.110906, Article 110906</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3</citedby><cites>FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hwang, Heesu</creatorcontrib><creatorcontrib>Ahn, Junsung</creatorcontrib><creatorcontrib>Lee, Hyunbae</creatorcontrib><creatorcontrib>Oh, Jiwon</creatorcontrib><creatorcontrib>Kim, Jaehwan</creatorcontrib><creatorcontrib>Ahn, Jae-Pyeong</creatorcontrib><creatorcontrib>Kim, Hong-Kyu</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Yoon, Young</creatorcontrib><creatorcontrib>Hwang, Jin-Ha</creatorcontrib><title>Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells</title><title>Materials characterization</title><description>Quantitative microstructural interpretations were carried out without human involvement through an integrated combination of deep learning and focused ion beam-scanning electron microscopy (FIB-SEM) analytics on Ni/Y2O3-stabilized ZrO2 (Ni/YSZ) cermets. The Ni/YSZ/pore composites were analyzed for the automated extraction of microstructural parameters to prevent the subjective analysis problems and unavoidable artifacts frequently encountered in lengthy image processing tasks and eliminate biased evaluations. Considering the high volume of image data and future expectations for electron microscopy usage, FIB-SEM was efficiently combined with semantic segmentation. Traditional image processing analysis tools are combined with phase separation predictions by semantic segmentation algorithms, leading to a quantitative evaluation of microstructural parameters. The combined strategy enables one to significantly enhance poor image quality originating from artifacts in electron microscopy, including charging effects, curtain effects, out-of-focus problems, and unclear phase boundaries encountered in searching for high-efficiency solid oxide fuel cells (SOFCs).
•Semantic segmentation was applied to image-based phase identification in SOFCs.•Microstructural quantification was made using deep learning-predicted images.•The stereological approach was synergistically combined with semantic segmentation.</description><subject>Deep learning</subject><subject>Microstructure features</subject><subject>SOFC anode composites</subject><subject>Stereology</subject><issn>1044-5803</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuPIOQFZpo0k0yyEqm_UHShLnQTYnKjKZlJSaZi394p7d7VPdzDORw-hC4pqSmhYraqOzPYb5PrOZnTmlKiiDhCEypbVjVUquNRk6apuCTsFJ2VsiKECEnbCYIbgDWOYHIf-q_KlBLKAA53weZUhryxwyabiE1v4nb0cPL4KczeXz7GV3KAberWqYQBCvYp45JicDj9htHyG4jYQozlHJ14EwtcHO4Uvd3dvi4equXz_ePiellZRtRQ8cbPjbTCMdlIRwVviPlUXDDnPTccuLWCGmVYI61qmRNCcBDEK9WCoMywKeL73t34ksHrdQ6dyVtNid6x0it9YKV3rPSe1Zi72udgHPcTIOtiA_QWXMhgB-1S-KfhD537dpw</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Hwang, Heesu</creator><creator>Ahn, Junsung</creator><creator>Lee, Hyunbae</creator><creator>Oh, Jiwon</creator><creator>Kim, Jaehwan</creator><creator>Ahn, Jae-Pyeong</creator><creator>Kim, Hong-Kyu</creator><creator>Lee, Jong-Ho</creator><creator>Yoon, Young</creator><creator>Hwang, Jin-Ha</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202102</creationdate><title>Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells</title><author>Hwang, Heesu ; Ahn, Junsung ; Lee, Hyunbae ; Oh, Jiwon ; Kim, Jaehwan ; Ahn, Jae-Pyeong ; Kim, Hong-Kyu ; Lee, Jong-Ho ; Yoon, Young ; Hwang, Jin-Ha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Microstructure features</topic><topic>SOFC anode composites</topic><topic>Stereology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Heesu</creatorcontrib><creatorcontrib>Ahn, Junsung</creatorcontrib><creatorcontrib>Lee, Hyunbae</creatorcontrib><creatorcontrib>Oh, Jiwon</creatorcontrib><creatorcontrib>Kim, Jaehwan</creatorcontrib><creatorcontrib>Ahn, Jae-Pyeong</creatorcontrib><creatorcontrib>Kim, Hong-Kyu</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Yoon, Young</creatorcontrib><creatorcontrib>Hwang, Jin-Ha</creatorcontrib><collection>CrossRef</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Heesu</au><au>Ahn, Junsung</au><au>Lee, Hyunbae</au><au>Oh, Jiwon</au><au>Kim, Jaehwan</au><au>Ahn, Jae-Pyeong</au><au>Kim, Hong-Kyu</au><au>Lee, Jong-Ho</au><au>Yoon, Young</au><au>Hwang, Jin-Ha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells</atitle><jtitle>Materials characterization</jtitle><date>2021-02</date><risdate>2021</risdate><volume>172</volume><spage>110906</spage><pages>110906-</pages><artnum>110906</artnum><issn>1044-5803</issn><eissn>1873-4189</eissn><abstract>Quantitative microstructural interpretations were carried out without human involvement through an integrated combination of deep learning and focused ion beam-scanning electron microscopy (FIB-SEM) analytics on Ni/Y2O3-stabilized ZrO2 (Ni/YSZ) cermets. The Ni/YSZ/pore composites were analyzed for the automated extraction of microstructural parameters to prevent the subjective analysis problems and unavoidable artifacts frequently encountered in lengthy image processing tasks and eliminate biased evaluations. Considering the high volume of image data and future expectations for electron microscopy usage, FIB-SEM was efficiently combined with semantic segmentation. Traditional image processing analysis tools are combined with phase separation predictions by semantic segmentation algorithms, leading to a quantitative evaluation of microstructural parameters. The combined strategy enables one to significantly enhance poor image quality originating from artifacts in electron microscopy, including charging effects, curtain effects, out-of-focus problems, and unclear phase boundaries encountered in searching for high-efficiency solid oxide fuel cells (SOFCs).
•Semantic segmentation was applied to image-based phase identification in SOFCs.•Microstructural quantification was made using deep learning-predicted images.•The stereological approach was synergistically combined with semantic segmentation.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2021.110906</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-5803 |
ispartof | Materials characterization, 2021-02, Vol.172, p.110906, Article 110906 |
issn | 1044-5803 1873-4189 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_matchar_2021_110906 |
source | Elsevier |
subjects | Deep learning Microstructure features SOFC anode composites Stereology |
title | Deep learning-assisted microstructural analysis of Ni/YSZ anode composites for solid oxide fuel cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-assisted%20microstructural%20analysis%20of%20Ni/YSZ%20anode%20composites%20for%20solid%20oxide%20fuel%20cells&rft.jtitle=Materials%20characterization&rft.au=Hwang,%20Heesu&rft.date=2021-02&rft.volume=172&rft.spage=110906&rft.pages=110906-&rft.artnum=110906&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2021.110906&rft_dat=%3Celsevier_cross%3ES104458032100036X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-54f2a8c6d3848d16540ab9563dff5a5e5cc61a9a348c973d6665e60f997e613a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |