Loading…
Shock-induced twinning in polycrystalline vanadium: II. Surface layer
In the course of study of shock-induced twinning in commercially pure (99.8 wt%) polycrystalline vanadium, some unexpected metallurgical features were found. In all vanadium samples softly recovered after planar impact loading by copper impactors with velocities ranging from 262 to 610 m/s, the doma...
Saved in:
Published in: | Materials characterization 2021-05, Vol.175, p.111062, Article 111062 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c309t-3ac49c29993a5be49b47208c20232b39eb9f365b9dc55fd1be14872f14716c443 |
---|---|
cites | cdi_FETCH-LOGICAL-c309t-3ac49c29993a5be49b47208c20232b39eb9f365b9dc55fd1be14872f14716c443 |
container_end_page | |
container_issue | |
container_start_page | 111062 |
container_title | Materials characterization |
container_volume | 175 |
creator | Hazan, A. Hillel, G. Kalabukhov, S. Frage, N. Zaretsky, E.B. Meshi, L. |
description | In the course of study of shock-induced twinning in commercially pure (99.8 wt%) polycrystalline vanadium, some unexpected metallurgical features were found. In all vanadium samples softly recovered after planar impact loading by copper impactors with velocities ranging from 262 to 610 m/s, the domain of twinned grains (located at the distance 100–900 μm from an impacted sample surface) preceded by a relatively narrow strip, 60–100 μm, densely filled by martensite lenticles of micron size. The distribution of shock-induced twins and the stress, required for their nucleation, were considered in the Part I of the present paper series. Part II of this series is focused on the Transmission Electron Microscopy study of the lenticles, formed in immediate proximity to the impacted surface. It was found that these lenticular particles are oblate ellipsoids of micron size filled with the stacks of 10–30 nm thick planar slabs, which possess tetragonal crystal structure. The slabs have alternating orientation of tetragonal axes c while the parameters of their unit cell are derivatives of cubic lattice parameter of vanadium, aV, namely a = b = 2aV and c = aV. Possible model, based on a sequence of glides, capable to generate such microstructure, and the cause for the disappearance of the lenticles beyond 100 μm apart from the impacted surface are discussed.
•In all V samples, after planar impact loading, surface layer contained particles.•Surface layer had 60–100 μm width, densely filled by lens-like particles.•Particles were found to be oblate ellipsoids of micron size.•These particles filled with the stacks of 10–30 nm thick planar slabs.•The slabs possess tetragonal crystal structure with a = b = 2aV and c = aVparameters. |
doi_str_mv | 10.1016/j.matchar.2021.111062 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_matchar_2021_111062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044580321001923</els_id><sourcerecordid>S1044580321001923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-3ac49c29993a5be49b47208c20232b39eb9f365b9dc55fd1be14872f14716c443</originalsourceid><addsrcrecordid>eNqFkE1OwzAUhC0EEqVwBCRfIMHPdn7MBqGqlEqVWBTWlvPiUJfUqey0KLcnVbtnNbOZ0cxHyCOwFBjkT9t0Z3rcmJByxiEFAJbzKzKBshCJhFJdj55JmWQlE7fkLsYtYywvoZiQ-XrT4U_ifH1AW9P-13nv_Dd1nu67dsAwxN60rfOWHo03tTvsnulymdL1ITQGLW3NYMM9uWlMG-3DRafk623-OXtPVh-L5ex1laBgqk-EQamQK6WEySorVSULzkocZwteCWUr1Yg8q1SNWdbUUFmQZcEbkAXkKKWYkuzci6GLMdhG74PbmTBoYPrEQm_1hYU-sdBnFmPu5Zyz47ijs0FHdNaPj12w2Ou6c_80_AGsdmn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shock-induced twinning in polycrystalline vanadium: II. Surface layer</title><source>ScienceDirect Freedom Collection</source><creator>Hazan, A. ; Hillel, G. ; Kalabukhov, S. ; Frage, N. ; Zaretsky, E.B. ; Meshi, L.</creator><creatorcontrib>Hazan, A. ; Hillel, G. ; Kalabukhov, S. ; Frage, N. ; Zaretsky, E.B. ; Meshi, L.</creatorcontrib><description>In the course of study of shock-induced twinning in commercially pure (99.8 wt%) polycrystalline vanadium, some unexpected metallurgical features were found. In all vanadium samples softly recovered after planar impact loading by copper impactors with velocities ranging from 262 to 610 m/s, the domain of twinned grains (located at the distance 100–900 μm from an impacted sample surface) preceded by a relatively narrow strip, 60–100 μm, densely filled by martensite lenticles of micron size. The distribution of shock-induced twins and the stress, required for their nucleation, were considered in the Part I of the present paper series. Part II of this series is focused on the Transmission Electron Microscopy study of the lenticles, formed in immediate proximity to the impacted surface. It was found that these lenticular particles are oblate ellipsoids of micron size filled with the stacks of 10–30 nm thick planar slabs, which possess tetragonal crystal structure. The slabs have alternating orientation of tetragonal axes c while the parameters of their unit cell are derivatives of cubic lattice parameter of vanadium, aV, namely a = b = 2aV and c = aV. Possible model, based on a sequence of glides, capable to generate such microstructure, and the cause for the disappearance of the lenticles beyond 100 μm apart from the impacted surface are discussed.
•In all V samples, after planar impact loading, surface layer contained particles.•Surface layer had 60–100 μm width, densely filled by lens-like particles.•Particles were found to be oblate ellipsoids of micron size.•These particles filled with the stacks of 10–30 nm thick planar slabs.•The slabs possess tetragonal crystal structure with a = b = 2aV and c = aVparameters.</description><identifier>ISSN: 1044-5803</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2021.111062</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Impact loading ; Plastic deformation ; Structure characterization ; TEM ; Twins ; Vanadium</subject><ispartof>Materials characterization, 2021-05, Vol.175, p.111062, Article 111062</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-3ac49c29993a5be49b47208c20232b39eb9f365b9dc55fd1be14872f14716c443</citedby><cites>FETCH-LOGICAL-c309t-3ac49c29993a5be49b47208c20232b39eb9f365b9dc55fd1be14872f14716c443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hazan, A.</creatorcontrib><creatorcontrib>Hillel, G.</creatorcontrib><creatorcontrib>Kalabukhov, S.</creatorcontrib><creatorcontrib>Frage, N.</creatorcontrib><creatorcontrib>Zaretsky, E.B.</creatorcontrib><creatorcontrib>Meshi, L.</creatorcontrib><title>Shock-induced twinning in polycrystalline vanadium: II. Surface layer</title><title>Materials characterization</title><description>In the course of study of shock-induced twinning in commercially pure (99.8 wt%) polycrystalline vanadium, some unexpected metallurgical features were found. In all vanadium samples softly recovered after planar impact loading by copper impactors with velocities ranging from 262 to 610 m/s, the domain of twinned grains (located at the distance 100–900 μm from an impacted sample surface) preceded by a relatively narrow strip, 60–100 μm, densely filled by martensite lenticles of micron size. The distribution of shock-induced twins and the stress, required for their nucleation, were considered in the Part I of the present paper series. Part II of this series is focused on the Transmission Electron Microscopy study of the lenticles, formed in immediate proximity to the impacted surface. It was found that these lenticular particles are oblate ellipsoids of micron size filled with the stacks of 10–30 nm thick planar slabs, which possess tetragonal crystal structure. The slabs have alternating orientation of tetragonal axes c while the parameters of their unit cell are derivatives of cubic lattice parameter of vanadium, aV, namely a = b = 2aV and c = aV. Possible model, based on a sequence of glides, capable to generate such microstructure, and the cause for the disappearance of the lenticles beyond 100 μm apart from the impacted surface are discussed.
•In all V samples, after planar impact loading, surface layer contained particles.•Surface layer had 60–100 μm width, densely filled by lens-like particles.•Particles were found to be oblate ellipsoids of micron size.•These particles filled with the stacks of 10–30 nm thick planar slabs.•The slabs possess tetragonal crystal structure with a = b = 2aV and c = aVparameters.</description><subject>Impact loading</subject><subject>Plastic deformation</subject><subject>Structure characterization</subject><subject>TEM</subject><subject>Twins</subject><subject>Vanadium</subject><issn>1044-5803</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAUhC0EEqVwBCRfIMHPdn7MBqGqlEqVWBTWlvPiUJfUqey0KLcnVbtnNbOZ0cxHyCOwFBjkT9t0Z3rcmJByxiEFAJbzKzKBshCJhFJdj55JmWQlE7fkLsYtYywvoZiQ-XrT4U_ifH1AW9P-13nv_Dd1nu67dsAwxN60rfOWHo03tTvsnulymdL1ITQGLW3NYMM9uWlMG-3DRafk623-OXtPVh-L5ex1laBgqk-EQamQK6WEySorVSULzkocZwteCWUr1Yg8q1SNWdbUUFmQZcEbkAXkKKWYkuzci6GLMdhG74PbmTBoYPrEQm_1hYU-sdBnFmPu5Zyz47ijs0FHdNaPj12w2Ou6c_80_AGsdmn0</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Hazan, A.</creator><creator>Hillel, G.</creator><creator>Kalabukhov, S.</creator><creator>Frage, N.</creator><creator>Zaretsky, E.B.</creator><creator>Meshi, L.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202105</creationdate><title>Shock-induced twinning in polycrystalline vanadium: II. Surface layer</title><author>Hazan, A. ; Hillel, G. ; Kalabukhov, S. ; Frage, N. ; Zaretsky, E.B. ; Meshi, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-3ac49c29993a5be49b47208c20232b39eb9f365b9dc55fd1be14872f14716c443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Impact loading</topic><topic>Plastic deformation</topic><topic>Structure characterization</topic><topic>TEM</topic><topic>Twins</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazan, A.</creatorcontrib><creatorcontrib>Hillel, G.</creatorcontrib><creatorcontrib>Kalabukhov, S.</creatorcontrib><creatorcontrib>Frage, N.</creatorcontrib><creatorcontrib>Zaretsky, E.B.</creatorcontrib><creatorcontrib>Meshi, L.</creatorcontrib><collection>CrossRef</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazan, A.</au><au>Hillel, G.</au><au>Kalabukhov, S.</au><au>Frage, N.</au><au>Zaretsky, E.B.</au><au>Meshi, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock-induced twinning in polycrystalline vanadium: II. Surface layer</atitle><jtitle>Materials characterization</jtitle><date>2021-05</date><risdate>2021</risdate><volume>175</volume><spage>111062</spage><pages>111062-</pages><artnum>111062</artnum><issn>1044-5803</issn><eissn>1873-4189</eissn><abstract>In the course of study of shock-induced twinning in commercially pure (99.8 wt%) polycrystalline vanadium, some unexpected metallurgical features were found. In all vanadium samples softly recovered after planar impact loading by copper impactors with velocities ranging from 262 to 610 m/s, the domain of twinned grains (located at the distance 100–900 μm from an impacted sample surface) preceded by a relatively narrow strip, 60–100 μm, densely filled by martensite lenticles of micron size. The distribution of shock-induced twins and the stress, required for their nucleation, were considered in the Part I of the present paper series. Part II of this series is focused on the Transmission Electron Microscopy study of the lenticles, formed in immediate proximity to the impacted surface. It was found that these lenticular particles are oblate ellipsoids of micron size filled with the stacks of 10–30 nm thick planar slabs, which possess tetragonal crystal structure. The slabs have alternating orientation of tetragonal axes c while the parameters of their unit cell are derivatives of cubic lattice parameter of vanadium, aV, namely a = b = 2aV and c = aV. Possible model, based on a sequence of glides, capable to generate such microstructure, and the cause for the disappearance of the lenticles beyond 100 μm apart from the impacted surface are discussed.
•In all V samples, after planar impact loading, surface layer contained particles.•Surface layer had 60–100 μm width, densely filled by lens-like particles.•Particles were found to be oblate ellipsoids of micron size.•These particles filled with the stacks of 10–30 nm thick planar slabs.•The slabs possess tetragonal crystal structure with a = b = 2aV and c = aVparameters.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2021.111062</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-5803 |
ispartof | Materials characterization, 2021-05, Vol.175, p.111062, Article 111062 |
issn | 1044-5803 1873-4189 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_matchar_2021_111062 |
source | ScienceDirect Freedom Collection |
subjects | Impact loading Plastic deformation Structure characterization TEM Twins Vanadium |
title | Shock-induced twinning in polycrystalline vanadium: II. Surface layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock-induced%20twinning%20in%20polycrystalline%20vanadium:%20II.%20Surface%20layer&rft.jtitle=Materials%20characterization&rft.au=Hazan,%20A.&rft.date=2021-05&rft.volume=175&rft.spage=111062&rft.pages=111062-&rft.artnum=111062&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2021.111062&rft_dat=%3Celsevier_cross%3ES1044580321001923%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-3ac49c29993a5be49b47208c20232b39eb9f365b9dc55fd1be14872f14716c443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |