Loading…
Fabrication of nanofibrous macroporous scaffolds of poly(lactic acid) incorporating bioactive glass nanoparticles by camphene-assisted phase separation
Here we produced macroporous and nanofibrous scaffolds with bioactive nanocomposite composition, poly(lactic acid) (PLA) incorporating bioactive glass nanoparticles (BGnp) up to 30 wt%, targeting bone regeneration. In particular, the nanofibrous structure in the scaffolds was generated by using a bi...
Saved in:
Published in: | Materials chemistry and physics 2014-02, Vol.143 (3), p.1092-1101 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here we produced macroporous and nanofibrous scaffolds with bioactive nanocomposite composition, poly(lactic acid) (PLA) incorporating bioactive glass nanoparticles (BGnp) up to 30 wt%, targeting bone regeneration. In particular, the nanofibrous structure in the scaffolds was generated by using a bicyclic monoterpene, camphene (C10H16), through a phase-separation process with PLA-BGnp phase in chloroform/1,4-dioxane co-solvent. Furthermore, macropores were produced by the impregnation of salt particles and their subsequent leaching out, followed by freezing and lyophilization processes. The produced PLA-BGnp scaffolds presented highly porous and nanofibrous structure with porosities of 90–95% and pore sizes of over hundreds of micrometers. BGnp with sizes of ∼90 nm were also evenly impregnated within the PLA matrix, featuring a nanocomposite structure. The nanofibrous scaffolds exhibited enhanced hydrophilicity and more rapid hydrolytic degradation as the incorporated BGnp content increased. The bone-bioactivity of the scaffolds was substantially improved with the incorporation of BGnp, exhibiting rapid formation of apatite throughout the scaffolds in a simulated body fluid. The developed macroporous and nanofibrous scaffolds with PLA-BGnp bioactive composition are considered as a novel 3D matrix potentially useful for bone tissue engineering.
•Exploring macroporous scaffolds with nanofibrous structuring.•Incorporating bioactive glass nanoparticles to produce nanocomposite scaffolds.•Showing excellent in vitro bioactivity useful for bone tissue engineering. |
---|---|
ISSN: | 0254-0584 1879-3312 |
DOI: | 10.1016/j.matchemphys.2013.11.009 |