Loading…
Room temperature ferromagnetism in Zn0.99La0.01O and pure ZnO nanoparticles
Room temperature ferromagnetism (RTFM) was observed in both La-doped and pure ZnO nanoparticles synthesized by the sol–gel method. RTFM is intrinsic according to the results of X-ray diffraction and X-ray photoelectron spectroscopy. The saturation magnetization (MS), the remnant magnetization at zer...
Saved in:
Published in: | Materials chemistry and physics 2014-06, Vol.145 (3), p.510-514 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Room temperature ferromagnetism (RTFM) was observed in both La-doped and pure ZnO nanoparticles synthesized by the sol–gel method. RTFM is intrinsic according to the results of X-ray diffraction and X-ray photoelectron spectroscopy. The saturation magnetization (MS), the remnant magnetization at zero field and coercive field are 5 × 10−3, 7 × 10−4 emu g−1, 100 Oe for Zn0.99La0.01O nanoparticles and 1.5 × 10−4, 1 × 10−5 emu g−1, 50 Oe for pure ZnO nanoparticles, respectively. The magnetization is enhanced greatly by doping of La. Furthermore, the MS of Zn0.99La0.01O nanoparticles decreases from 0.005 to 0.001 emu g−1 as the annealing temperature increases from 500 to 700 °C. The doping of La introduces more oxygen vacancies into ZnO. The decrease of annealing temperature also produces more oxygen vacancies in La-doped ZnO. These results indicate that the origin of the RTFM is related to oxygen vacancies.
•La-doped and pure ZnO nanoparticles were synthesized by sol–gel method.•Room temperature ferromagnetism (RTFM) was found in both La-doped and pure ZnO nanoparticles.•RTFM related to oxygen vacancies enhanced by La doping is d0 ferromagnetism. |
---|---|
ISSN: | 0254-0584 1879-3312 |
DOI: | 10.1016/j.matchemphys.2014.02.053 |