Loading…

Dependence of mobility and Lorenz number on electronic structure and scattering in wurtzite ZnO

The Lorenz number relates electronic thermal conductivity to the electrical conductivity for thermoelectric materials. One of the most effective approaches to enhance thermoelectric efficiency is to lower the lattice thermal conductivity, which is unmeasurable directly, while the total thermal condu...

Full description

Saved in:
Bibliographic Details
Published in:Materials chemistry and physics 2022-08, Vol.287, p.126382, Article 126382
Main Authors: Hu, Yequan, Wan, Rundong, Zhang, Zhengfu, Guo, Zhongcheng, Tian, Guocai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-bee731db8ceebae652e6419c726ceac59808593452d116380f800a70223bbb353
cites cdi_FETCH-LOGICAL-c321t-bee731db8ceebae652e6419c726ceac59808593452d116380f800a70223bbb353
container_end_page
container_issue
container_start_page 126382
container_title Materials chemistry and physics
container_volume 287
creator Hu, Yequan
Wan, Rundong
Zhang, Zhengfu
Guo, Zhongcheng
Tian, Guocai
description The Lorenz number relates electronic thermal conductivity to the electrical conductivity for thermoelectric materials. One of the most effective approaches to enhance thermoelectric efficiency is to lower the lattice thermal conductivity, which is unmeasurable directly, while the total thermal conductivity, including the electronic thermal conductivity and lattice thermal conductivity, is measurable. Nevertheless, the electronic thermal conductivity can be inferred from the electrical conductivity using the Lorenz number. Therefore, an accurate Lorenz number becomes the key. In literature, the Lorenz number is empirically related to the Seebeck coefficient, ignoring the electronic structure and scattering mechanism. Here, we show that the mobility and Lorenz number strongly depend on the electronic structure and scattering for the wurtzite ZnO. The electronic transport properties only depend on the band edge near the Fermi level when the bandgap is larger than 1 eV; otherwise, the bipolar effect affects the results. A low effective mass causes large mobility. The MBJ and LMBJ functionals can predict accurate band structures. The influences of the polar optical phonon, ionized impurity, and piezoelectric scatterings on mobility are in the decreasing order, while the acoustic phonon scattering can be ignored. All four scatterings are indispensable in determining the Lorenz number. These findings can be extended to other thermoelectric materials beyond oxides. •Mobility and Lorenz number depend on the electronic structure and scattering.•MBJ and LMBJ functionals can predict accurate band structures.•Polar optical phonon affects mobility the most in the four scatterings.•All four scatterings are indispensable in determining the Lorenz number.
doi_str_mv 10.1016/j.matchemphys.2022.126382
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_matchemphys_2022_126382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058422006885</els_id><sourcerecordid>S0254058422006885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-bee731db8ceebae652e6419c726ceac59808593452d116380f800a70223bbb353</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD-YDEjx2nMcSladUqRvYsLFsZ0JdNU5lO6Dy9aSUBUtWs5l7dc8h5BpYDgzKm03e62TX2O_W-5hzxnkOvBQ1PyEzqKsmEwL4KZkxLouMybo4JxcxbhiDCkDMiLrDHfoWvUU6dLQfjNu6tKfat3Q5BPRf1I-9wUAHT3GLNoXBO0tjCqNNY8Cfz2h1Shicf6fO088xpC-XkL751SU56_Q24tXvnZPXh_uXxVO2XD0-L26XmRUcUmYQKwGtqS2i0VhKjmUBja14aVFb2dSslo0oJG8BJjzW1YzpasIVxhghxZw0x14bhhgDdmoXXK_DXgFTB1Nqo_6YUgdT6mhqyi6OWZwGfjgMKlp3MNK6MAGrdnD_aPkGLWZ5zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dependence of mobility and Lorenz number on electronic structure and scattering in wurtzite ZnO</title><source>Elsevier</source><creator>Hu, Yequan ; Wan, Rundong ; Zhang, Zhengfu ; Guo, Zhongcheng ; Tian, Guocai</creator><creatorcontrib>Hu, Yequan ; Wan, Rundong ; Zhang, Zhengfu ; Guo, Zhongcheng ; Tian, Guocai</creatorcontrib><description>The Lorenz number relates electronic thermal conductivity to the electrical conductivity for thermoelectric materials. One of the most effective approaches to enhance thermoelectric efficiency is to lower the lattice thermal conductivity, which is unmeasurable directly, while the total thermal conductivity, including the electronic thermal conductivity and lattice thermal conductivity, is measurable. Nevertheless, the electronic thermal conductivity can be inferred from the electrical conductivity using the Lorenz number. Therefore, an accurate Lorenz number becomes the key. In literature, the Lorenz number is empirically related to the Seebeck coefficient, ignoring the electronic structure and scattering mechanism. Here, we show that the mobility and Lorenz number strongly depend on the electronic structure and scattering for the wurtzite ZnO. The electronic transport properties only depend on the band edge near the Fermi level when the bandgap is larger than 1 eV; otherwise, the bipolar effect affects the results. A low effective mass causes large mobility. The MBJ and LMBJ functionals can predict accurate band structures. The influences of the polar optical phonon, ionized impurity, and piezoelectric scatterings on mobility are in the decreasing order, while the acoustic phonon scattering can be ignored. All four scatterings are indispensable in determining the Lorenz number. These findings can be extended to other thermoelectric materials beyond oxides. •Mobility and Lorenz number depend on the electronic structure and scattering.•MBJ and LMBJ functionals can predict accurate band structures.•Polar optical phonon affects mobility the most in the four scatterings.•All four scatterings are indispensable in determining the Lorenz number.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2022.126382</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Band structure ; Bipolar effect ; Effective mass ; Scattering ; Thermoelectric</subject><ispartof>Materials chemistry and physics, 2022-08, Vol.287, p.126382, Article 126382</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-bee731db8ceebae652e6419c726ceac59808593452d116380f800a70223bbb353</citedby><cites>FETCH-LOGICAL-c321t-bee731db8ceebae652e6419c726ceac59808593452d116380f800a70223bbb353</cites><orcidid>0000-0003-1933-4265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hu, Yequan</creatorcontrib><creatorcontrib>Wan, Rundong</creatorcontrib><creatorcontrib>Zhang, Zhengfu</creatorcontrib><creatorcontrib>Guo, Zhongcheng</creatorcontrib><creatorcontrib>Tian, Guocai</creatorcontrib><title>Dependence of mobility and Lorenz number on electronic structure and scattering in wurtzite ZnO</title><title>Materials chemistry and physics</title><description>The Lorenz number relates electronic thermal conductivity to the electrical conductivity for thermoelectric materials. One of the most effective approaches to enhance thermoelectric efficiency is to lower the lattice thermal conductivity, which is unmeasurable directly, while the total thermal conductivity, including the electronic thermal conductivity and lattice thermal conductivity, is measurable. Nevertheless, the electronic thermal conductivity can be inferred from the electrical conductivity using the Lorenz number. Therefore, an accurate Lorenz number becomes the key. In literature, the Lorenz number is empirically related to the Seebeck coefficient, ignoring the electronic structure and scattering mechanism. Here, we show that the mobility and Lorenz number strongly depend on the electronic structure and scattering for the wurtzite ZnO. The electronic transport properties only depend on the band edge near the Fermi level when the bandgap is larger than 1 eV; otherwise, the bipolar effect affects the results. A low effective mass causes large mobility. The MBJ and LMBJ functionals can predict accurate band structures. The influences of the polar optical phonon, ionized impurity, and piezoelectric scatterings on mobility are in the decreasing order, while the acoustic phonon scattering can be ignored. All four scatterings are indispensable in determining the Lorenz number. These findings can be extended to other thermoelectric materials beyond oxides. •Mobility and Lorenz number depend on the electronic structure and scattering.•MBJ and LMBJ functionals can predict accurate band structures.•Polar optical phonon affects mobility the most in the four scatterings.•All four scatterings are indispensable in determining the Lorenz number.</description><subject>Band structure</subject><subject>Bipolar effect</subject><subject>Effective mass</subject><subject>Scattering</subject><subject>Thermoelectric</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD-YDEjx2nMcSladUqRvYsLFsZ0JdNU5lO6Dy9aSUBUtWs5l7dc8h5BpYDgzKm03e62TX2O_W-5hzxnkOvBQ1PyEzqKsmEwL4KZkxLouMybo4JxcxbhiDCkDMiLrDHfoWvUU6dLQfjNu6tKfat3Q5BPRf1I-9wUAHT3GLNoXBO0tjCqNNY8Cfz2h1Shicf6fO088xpC-XkL751SU56_Q24tXvnZPXh_uXxVO2XD0-L26XmRUcUmYQKwGtqS2i0VhKjmUBja14aVFb2dSslo0oJG8BJjzW1YzpasIVxhghxZw0x14bhhgDdmoXXK_DXgFTB1Nqo_6YUgdT6mhqyi6OWZwGfjgMKlp3MNK6MAGrdnD_aPkGLWZ5zw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Hu, Yequan</creator><creator>Wan, Rundong</creator><creator>Zhang, Zhengfu</creator><creator>Guo, Zhongcheng</creator><creator>Tian, Guocai</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1933-4265</orcidid></search><sort><creationdate>20220801</creationdate><title>Dependence of mobility and Lorenz number on electronic structure and scattering in wurtzite ZnO</title><author>Hu, Yequan ; Wan, Rundong ; Zhang, Zhengfu ; Guo, Zhongcheng ; Tian, Guocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-bee731db8ceebae652e6419c726ceac59808593452d116380f800a70223bbb353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Band structure</topic><topic>Bipolar effect</topic><topic>Effective mass</topic><topic>Scattering</topic><topic>Thermoelectric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yequan</creatorcontrib><creatorcontrib>Wan, Rundong</creatorcontrib><creatorcontrib>Zhang, Zhengfu</creatorcontrib><creatorcontrib>Guo, Zhongcheng</creatorcontrib><creatorcontrib>Tian, Guocai</creatorcontrib><collection>CrossRef</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yequan</au><au>Wan, Rundong</au><au>Zhang, Zhengfu</au><au>Guo, Zhongcheng</au><au>Tian, Guocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependence of mobility and Lorenz number on electronic structure and scattering in wurtzite ZnO</atitle><jtitle>Materials chemistry and physics</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>287</volume><spage>126382</spage><pages>126382-</pages><artnum>126382</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>The Lorenz number relates electronic thermal conductivity to the electrical conductivity for thermoelectric materials. One of the most effective approaches to enhance thermoelectric efficiency is to lower the lattice thermal conductivity, which is unmeasurable directly, while the total thermal conductivity, including the electronic thermal conductivity and lattice thermal conductivity, is measurable. Nevertheless, the electronic thermal conductivity can be inferred from the electrical conductivity using the Lorenz number. Therefore, an accurate Lorenz number becomes the key. In literature, the Lorenz number is empirically related to the Seebeck coefficient, ignoring the electronic structure and scattering mechanism. Here, we show that the mobility and Lorenz number strongly depend on the electronic structure and scattering for the wurtzite ZnO. The electronic transport properties only depend on the band edge near the Fermi level when the bandgap is larger than 1 eV; otherwise, the bipolar effect affects the results. A low effective mass causes large mobility. The MBJ and LMBJ functionals can predict accurate band structures. The influences of the polar optical phonon, ionized impurity, and piezoelectric scatterings on mobility are in the decreasing order, while the acoustic phonon scattering can be ignored. All four scatterings are indispensable in determining the Lorenz number. These findings can be extended to other thermoelectric materials beyond oxides. •Mobility and Lorenz number depend on the electronic structure and scattering.•MBJ and LMBJ functionals can predict accurate band structures.•Polar optical phonon affects mobility the most in the four scatterings.•All four scatterings are indispensable in determining the Lorenz number.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2022.126382</doi><orcidid>https://orcid.org/0000-0003-1933-4265</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2022-08, Vol.287, p.126382, Article 126382
issn 0254-0584
1879-3312
language eng
recordid cdi_crossref_primary_10_1016_j_matchemphys_2022_126382
source Elsevier
subjects Band structure
Bipolar effect
Effective mass
Scattering
Thermoelectric
title Dependence of mobility and Lorenz number on electronic structure and scattering in wurtzite ZnO
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependence%20of%20mobility%20and%20Lorenz%20number%20on%20electronic%20structure%20and%20scattering%20in%20wurtzite%20ZnO&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Hu,%20Yequan&rft.date=2022-08-01&rft.volume=287&rft.spage=126382&rft.pages=126382-&rft.artnum=126382&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2022.126382&rft_dat=%3Celsevier_cross%3ES0254058422006885%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-bee731db8ceebae652e6419c726ceac59808593452d116380f800a70223bbb353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true